# **REVISED DRAFT**

# GeoProbe SAMPLING PLAN

CPS/Madison
Superfund Site

**SUBMITTED BY** 



Ciba

SUBMITTED TO



PREPARED BY

Ciba Specialty Chemicals Corporate Remediation Toms River, New Jersey February 3, 2006

509878

# Table of Contents

- 1. Background
- 2. Purpose
- 3. Piezometer Installation
- 4. Soil and Groundwater Sampling
  - 4.1 Sample Collection Methodology
  - 4.2 Decontamination Procedures
- 5. Analytical Methodology and QA/QC
  - 5.1 Soil Samples
  - 5.2 Groundwater Samples
  - 5.3 Laboratory Quality Assurance/Quality Control
  - 5.4 Duplicate and MS/MSD Samples
  - 5.5 Confirmation Samples
- 6. Field Quality Assurance Samples
- 7. Analytical Deliverables and Validation
- 8. Reporting

# **FIGURES**

Figure #1 Sampling Locations

# **TABLES**

| Table #1 | Sample Intervals and Required Analysis |
|----------|----------------------------------------|
| Table #2 | VOC Target Compound List               |
| Table #3 | Semi-VOC Target Compound List          |
| Table #4 | Metals-Target Analyte List             |
| Table #5 | VOC-Method Surrogates                  |
| Table #6 | Semi-VOC Method Surrogates             |

# **ATTACHMENTS**

Attachment #1- CPS/Madison Groundwater Characterization (excerpt from RI/FS Summary Report)

Attachment #2-Ciba Remediation Laboratory Quality Assurance Manual

Attachment #3-Lancaster Laboratories Quality Assurance Project Plan

# 1. Background

Ciba Specialty Chemicals Inc. acquired responsibility for the CPS Chemical Company Old Bridge Facility in March 1998 as part of their acquisition of Allied Colloids. The site has a long and well documented regulatory and operational history and for the purposes of this report will continue to be referred to as the CPS site.

In October 1992, CPS Chemical Company, Inc. (CPS) and the New Jersey Department of Environmental Protection (NJDEP) executed an Administrative Consent Order (ACO) requiring CPS to perform a remedial investigation (RI) and feasibility study (FS) at the CPS facility in Old Bridge, New Jersey, in accordance with and New Jersey Technical Requirements for Site Remediation. (NJAC 7:26E, 1997) and the United States Environmental Protection Agency's (USEPA) "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA" (USEPA, 1988). The CPS RI was completed in three phases (Phase I(1993), Phase II(1995) and Phase III(1996)) and approved by the NJDEP. As a result of the RI, contaminated soils and ground water were delineated, and an interim ground water recovery system was installed and began operation in March 1996. Since their inception, these remediation measures have significantly reduced groundwater contaminant concentrations in the production source area and in the downgradient groundwater plume. On-going optimization of the groundwater recovery system continues and a Feasibility Study was submitted to the NJDDEP and USEPA during 2001. Manufacturing activity was terminated at the site on December 14, 2001. In October 2003, the state requested that EPA take the lead for the CPS/Madison site.

As a result of the transition from NJDEP to USEPA lead, an RI/FS Summary report was prepared and issued to the USEPA on November 7, 2005. In that report, results of recent sampling and investigations were discussed and presented our current understanding of the contaminant plume and source area soils. This section of the report is provided here (Attachment #1) as a background document, detailing the need for additional data gathering and provides the basis for this proposed sampling event. However, it is clear that a significant amount of VOC mass is crossing the CPS property line near CPS-1 ( see Figure 1). While these are similar compounds as are found in the extraction wells, based on concentration magnitude both in extracted groundwater and in the characterized source area, it is not clear whether this mass is associated with the characterized source area or is associated with an unknown source. Therefore, an additional field investigation will be conducted in an effort to fill some exiting data gaps

# 2. Purpose

This field sampling plan is intended to describe a supplemental field investigation for site soils and groundwater characterization and to investigate the increase in VOC concentrations noted in sentinel well CPS-1. In our meeting held with EPA on November 17, 2005 Ciba described the increase in volatile organic chemical contamination in ground water monitoring sentinel well CPS-1. In an attempt to characterize the nature and

extent of contamination at CPS-1, Ciba proposes a screening assessment that includes the installation of six (6) temporary piezometers for water quality and water level measurement and the completion of one (1) boring for water quality measurement in the general area of CPS-1. Figure # 1 provides a location map of the proposed sampling locations.

While the drilling equipment is mobilized on-site to complete this work, soil samples will also be secured at each probe location described above, which will aid in the further delineation of the source area soils. Additionally, two borings (identified as TF-2A & TF-2B in Fig. #1) will be completed in the Tank Farm #2 area to investigate an area of "stained soil" recently uncovered during demolition activity.

# 3. Piezometer Installation and Groundwater Sample Collection

SGS Drilling will provide an all terrain dual tube GeoProbe rig to accomplish the work. At specified intervals (described in Table #1) a groundwater sample will be collected utilizing a peristaltic pump. Samples will be collected into 40 ml vials for VOC analysis. New pump tubing will be utilized for each sample. As stated above, this is a screening level assessment and the data quality objectives are broad in nature.

At a specified depth of 25 or 30 feet (depending on ground surface elevation), a 11/2 inch piezometer with a five foot screen will be installed and left in place at 6 locations for approximately six months. Permits for these temporary piezometers have been secured from the NJDEP. One (1) additional borehole will be completed with groundwater samples collected at two intervals in the borehole (see Table #1). The borehole will be grouted as necessary when the drilling equipment is removed.

Decontamination procedures and field QA/QC protocols as detailed in the soils sampling section below will be utilized. It is anticipated that the analysis will be performed by Ciba Remediation Laboratory located at the Toms River Superfund Site (approved by USEPA Region II). However, samples may also be sent to Lancaster Laboratories for analysis.

# 4. Soil and Groundwater Sampling

Soil cores will be collected in 5 foot Macrocore tube samplers lined with an acetate liner. Five foot length cores will be collected at selected intervals at each location. A discrete soil VOC sample will be collected from each specified interval. Hnu or similar PID screening will be conducted along the length of each recovered core sample. PID readings will be conducted every 6 inches and recorded. A discrete VOC sample will be collected at the section of the core which exhibits the highest PID reading. Thus the VOC sample will be BIASED high. A single composite sample will be collected from the Tank Farm #2 area for semi-volatile and metals analysis. An area of "stained soil" was recently uncovered in this area during demolition activity which needs to be characterized.

Site field conditions and occurrences may require changes to the sampling location and/or interval.

### 4.1 SAMPLE COLLECTION METHODOLOGY

- Drive the Macrocore tube sampler into the soil
- Withdraw the sampler. Screen the end of the sampler with a PID before disassembling. Record readings into field notes.
- Disassemble sampler and split acetate sleeve by cutting it open parallel to the 5 foot core.
- Screen by PID record reading at each 6 inch length into logbook.
- Transfer the sample from core into appropriate containers. VOC samples will be collected in two (2) ounce jars with a Teflon lined septum cap. Samples for SVOC/metals/other analysis will utilize appropriate sized jars with Teflon lined caps.
- All soil samples will be unpreserved but kept in coolers until delivered to the laboratory.
- Install tubing and utilizing peristaltic pump collect ground water sample if required (40 ml vial with preservative). Remove tubing.
- Label each sample in accordance with the Ciba EQuIS1 identification system.
- Advance geoprobe to selected depth, then advance Macrocore.
- Repeat above as required.

# 4.2 DECONTAMINATION PROCEDURE

The geoprobe tube samplers and drill rods will be steamed cleaned with high pressure water prior to use at the site.

If disposable sampling equipment is used, this equipment will not need to be decontaminated.

Otherwise, at the start of each new piezometer/borehole, sample equipment including tube samplers and drilling equipment will be cleaned following the procedure outlined below. Soils generated during the drilling process will be left on site. If non-disposable sampling equipment is used, the following decontamination procedure will be used for sampling equipment:

- Remove visual contamination and wipe clean.
- Wash with detergent and site tap water.
- Rinse with tap water.
- Rinse with distilled water.
- Rinse with isopropyl alcohol.
- Air dry.
- Final rinse with distilled water.
- Air dry.

<sup>&</sup>lt;sup>1</sup> EQuIS from EarthSoft, Inc. is used by Ciba for its environmental database.

While collecting samples from different intervals within the same borehole, tube sampler and other sampling equipment will also be cleaned.

- Remove visual contamination and wipe clean.
- Wash with detergent and site tap water.
- Rinse with tap water.
- Rinse with distilled water.

# 5.0 Analytical and QA/QC

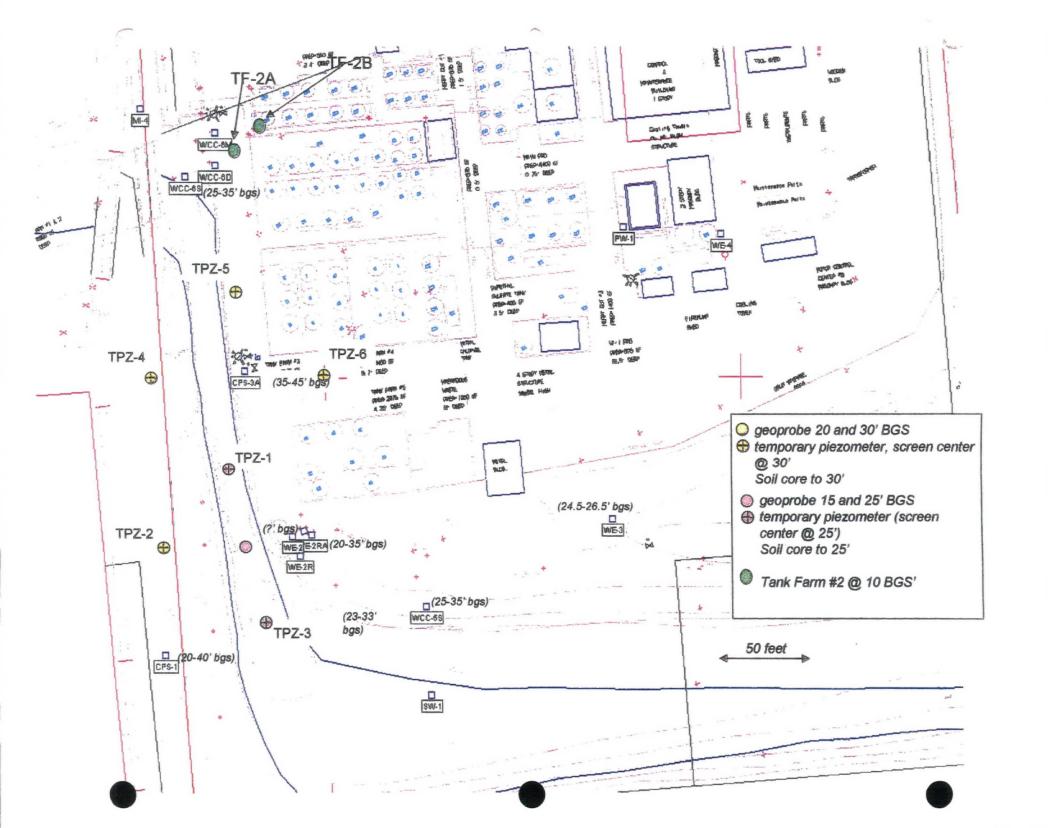
All analytical methods utilized for analysis of samples will be from USEPA "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," April 1998, SW-846, revision 5.

- 5.1. Soil samples are to be collected in a two ounce pre-cleaned glass jar with a Teflon septum cap for VOC samples. The soil sample will be methanol extracted in the laboratory utilizing EPA Method 5035A, followed by Method 8260 analysis (see Table 2 for Target Compound List). Semi-volatile soil samples will be collected in 500 ml pre-cleaned glass jars with Teflon lined caps. The samples will be extracted by Method 3545 followed by Method 8270 analysis (see Table 3 for Target Compound List). Metals samples will be collected in pre-cleaned 250 ml glass jar with a Teflon lined cap and extracted by Method 3050B and analyzed by Method 6010B for the standard Target Analyte List (Table 4). Volatile "surrogates" and internal standards are listed in Table 5, and semi-volatile surrogates and internal standards utilized are listed in Table 6.
- 5.2 Ground water samples will be collected directly into 40 ml vials preserved with 1:1 HCL and analyzed via Method 8260 (see Table 2 for compound) list.
- 5.3 Sampling containers, preservation methods and sample holding times will be consistent with the laboratory 's Quality Assurance Manuel. All samples will be placed into coolers and cooled to 4 degrees C with ice and shipped to Lancaster Laboratories or Ciba's in-house laboratory. Chain of Custody will be maintained for all samples from bottle origin to laboratory. See Ciba Remediation and Lancaster Laboratories Quality Assurance Manuals (paper or CD copy provided as Attachment #2 and Attachment #3).
- 5.4 A duplicate sample (DUP) will be secured for every 20 samples as will an additional MS/MSD sample for every 20 samples.
- 5.5 If analysis is performed by the Ciba laboratory, five (5) percent of the samples will be sent to Lancaster laboratories for confirmatory analysis

# 6.0 FIELD QUALITY ASSURANCE SAMPLES

- 6.1 Equipment field blanks will be utilized for quality assurance purposes to assess the possible effects of inadvertent sampling contamination. An equipment field rinse blank consists of containers that are transported to the site empty and filled with contaminant-free, reagent grade water that has rinsed the clean sampling equipment so as to provide data to evaluate the effectiveness of decontamination procedures. During the collection of samples, one field rinse blank will be collected at the start of each boring.
- 6.2 In addition to equipment field rinse blanks, trip blanks will also be utilized. A trip blank consists of containers filled with contaminant-free, reagent grade water that accompanies clean bottles shipped to the site. These containers of water remain unopened and accompany the samples back to the laboratory. The purpose is to provide data that can be used to evaluate whether contamination has been introduced from a source other than contamination attributable to the site.

# 7.0 ANALYTICAL DATA PACKAGE


The analytical data deliverable consists of an EDD in an EQuIS four (4) - file format provided by the laboratory. Analytical results will be provided to USEPA within 45 days. A CLP equivalent data package can also be supplied from the laboratory if required. Data from five (5) percent of the samples will be validated. Validation will be performed by Advanced GeoServices Corporation, located in West Chester, Pennsylvania.

# 8.0 REPORTING

The data collected will be analyzed and incorporated into the conceptual model for the site. A report will be provided which includes a summary of the data and conclusions and recommendations based on data analysis.

See next page for proposed Sample Analysis Table

# FIGUR ES



# T A B L E S



# Proposed Sample/Analysis

|        | TP-1      | BH-1   | TP-2    | TP-3  | TP-4  | TP-5  | TP-6  | TF-2A | TF2B |
|--------|-----------|--------|---------|-------|-------|-------|-------|-------|------|
| depth  |           |        |         |       |       |       |       |       |      |
| 0-5    |           |        |         |       |       |       |       | S1    | S1   |
| 5-10   |           |        | S1+GW   |       | S1+GW | S3+GW | S3+GW | S3+GW | S1 . |
| 10-15  | S1+GW     | S1+GW  |         | S1+GW |       |       |       |       |      |
| 15-20  |           |        | S1+GW   |       | S1+GW | S1+GW | S1+GW |       |      |
| 20-25  | S1+GW     | S1+GW  |         | S1+GW |       |       |       |       |      |
| 25-30  |           |        | S1+GW   |       | S1+GW | S1+GW | S1+GW |       |      |
| GW=VOC | water     |        |         |       |       |       |       |       |      |
| S1=VOC | soil      |        |         |       |       |       |       |       |      |
| S3=VOC | SVOC      | Metals | (soils) |       |       |       |       |       |      |
| Total  | 22 ground | dwater | VOCs    |       |       |       |       |       |      |
|        | 22 soil   |        | VOCs    |       |       |       |       |       |      |
|        | 1 soil    |        | SVOC    |       |       |       | -     |       |      |
|        | 1 soil    |        | metals  |       |       |       |       |       |      |

# 1A Volatile Organic Analysis Data Sheet

Table 2

Lab Name: Ciba Remediation Testing Lab.

Lab Code: \_\_\_\_\_

Matrix: (soil/water) Water

Test Code: LIMS Number.:

Lab Sample Id.: L

Sample wt/vol 5 ml Lab File ld.: B1060127.D Level: (low/med) low Date Sampled.:

% Moisture: Date Analyzed: 01/27/06 GC Column: RTX-502 I.D.: 0.25mm Dilution Factor: 1

| CAS NO.          | COMPOUND                  | RESULT ug/L | MDL ug/L Q |
|------------------|---------------------------|-------------|------------|
| 75-71-8          | Dichlorodifluoromethane   | N.D.        | 0.6 U      |
| 74-87-3          | Chloromethane             | N.D.        | 0.6 U      |
| 75-01-4          | Vinyl Chloride            | N.D.        | 1.4 U      |
| 74-83-9          | Bromomethane              | N.D.        | 0.9 U      |
| 75-00-3          | Chloroethane              | N.D.        | 1.0 U      |
| 75-69-4          | Trichlorofluoromethane    | N.D.        | 0.5 U      |
| 60-29-7          | Diethyl Ether             | N.D.        | 0.9 U      |
| 67-64-1          | Acetone                   | N.D.        | 4.0 U      |
| 75-35-4          | 1,1-Dichloroethene        | N.D.        | 0.9 Ü      |
| 74-88-4          | Methyl lodide             | N.D.        | 2.5 U      |
| 107-05-1         | Allyl Chloride            | N.D.        | 1.5 U      |
| 75-15-0          | Carbon Disulfide          | N.D.        | 0.6 U      |
| 75-09-2          | Methylene Chloride        | N.D.        | 1.3 U      |
| 107-13-1         | Acrylonitrile             | N.D.        | 1.8 U      |
| 1634-04-4        | Methyl-t-butyl Ether      | N.D.        | 0.5 U      |
| 156-60-5         | trans-1,2-Dichloroethene  | N.D.        | 0.8 U      |
| 75-34-3          | 1,1-Dichloroethane        | N.D.        | 0.2 U      |
| 78- <b>9</b> 3-3 | 2-Butanone                | N.D.        | 2.2 U      |
| 107-12-0         | Propionitrile             | N.D.        | 5.4 U      |
| 594-20-7         | 2,2-Dichloropropane       | N.D.        | 0.6 U      |
| 156-59-2         | cis-1,2-Dichloroethene    | N.D.        | 0.7 U      |
| 126-98-7         | Methacrylonitrile         | N.D.        | 2.1 U      |
| 96-33-3          | Methyl Acrylate           | N.D.        | 0.8 U      |
| 67-66-3          | Chloroform                | N.D.        | 0.4 U      |
| 74-97-5          | Bromochloromethane        | N.D.        | 1.7 U      |
| 109-99-9         | Tetrahydrofuran           | N.D.        | 5.9 U      |
| 71-55-6          | 1,1,1-Trichloroethane     | N.D.        | 0.5 U      |
| 109-69-3         | 1-Chlorobutane            | N.D.        | 0.6 U      |
| 563-58-6         | 1,1-Dichloropropene       | N.D.        | 0.6 U      |
| 56-23-5          | Carbon Tetrachloride      | N.D.        | 0.5 U      |
| 107-06-2         | 1,2-Dichloroethane        | N.D.        | 0.6 U      |
| 71-43-2          | Benzene                   | N.D.        | 0.3 U      |
| 79-01 <b>-</b> 6 | Trichloroethene           | N.D.        | 0.5 U      |
| 78-87-5          | 1,2-Dichloropropane       | N.D.        | 0.6 U      |
| 80-62-6          | Methyl Methacrylate       | N.D.        | 0.9 U      |
| 75-27-4          | Bromodichloromethane      | N.D.        | 0.4 U      |
| 74-95-3          | Dibromomethane            | N.D.        | 0.7 U      |
| 108-10-1         | 4-Methyl-2-Pentanone      | N.D.        | 0.7 U      |
| 10061-01-5       | cis-1,3-Dichloropropene   | N.D.        | 0.4 U      |
| 108-88-3         | Toluene                   | N.D.        | 0.4 U      |
| 10061-02-6       | trans-1,3-Dichloropropene | N.D.        | 0.3 U      |

# 1A

**Volatile Organic Analysis Data Sheet** 

Lab Name: Ciba Remediation Testing Lab. Test Code: 8260-w Lab Code: LIMS Number.: Matrix: (soil/water) Water Lab Sample Id.: Blank

Lab File Id.: B1060127.D Sample wt/vol 5 ml Level: (low/med) low Date Sampled.:

Date Analyzed: % Moisture:

01/27/06 Dilution Factor: GC Column: RTX-502 I.D.: 0.25mm 1

| CAS NO.           | COMPOUND                    | RESULT ug/L | MDL ug/L | Q |
|-------------------|-----------------------------|-------------|----------|---|
| 97-63-2           | Ethyl Methacrylate          | N.D.        | 0.6      | U |
| 79-00-5           | 1,1,2-Trichloroethane       | N.D.        | 0.8      | U |
| 106-93-4          | 1,2-Dibromoethane           | N.D.        | 0.9      | U |
| 591-78-6          | 2-Hexanone                  | N.D.        | 0.6      | U |
| 142-28-9          | 1,3-Dichloropropane         | N.D.        | 0.6      | U |
| 127-18-4          | Tetrachloroethene           | N.D.        | 0.7      | U |
| 124-48-1          | Dibromochloromethane        | N.D.        | 0.5      | U |
| 108-90-7          | Chlorobenzene               | N.D.        | 0.5      | U |
| 630-20-6          | 1,1,1,2-Tetrachloroethane   | N.D.        | 0.6      | U |
| 100-41-4          | Ethylbenzene                | N.D.        | 0.4      | U |
| 1330-20-7         | m+p-Xylene                  | N,D.        | 1.0      | U |
| 95-47-6           | o-Xylene                    | N.D.        | 0.8      | U |
| 100-42-5          | Styrene                     | N.D.        | 0.6      | U |
| 75-25-2           | Bromoform                   | N.D.        | 0.5      | U |
| 98-82-8           | Isopropyibenzene            | N.D.        | 0.3      | U |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | N.D.        | 0.9      | U |
| 96-18-4           | 1,2,3-Trichloropropane      | N.D.        | 1.0      | U |
| 110-57-6          | trans-1,4-Dichloro-2-Butene | N.D.        | 1.2      | U |
| 103 <b>-</b> 65-1 | n-Propylbenzene             | N.D.        | 0.4      | U |
| 108-86-1          | Bromobenzene                | N.D.        | 0.8      | U |
| 108-67-8          | 1,3,5-Trimethylbenzene      | N.D.        | 0.5      | U |
| 95-49-8           | 2-Chlorotoluene             | N.D.        | 0.6      | U |
| 106-43-4          | 4-Chlorotoluene             | N.D.        | 0.6      | U |
| 98-06-6           | tert-Butylbenzene           | N.D.        | 0.4      | U |
| 95-63-6           | 1,2,4-Trimethylbenzene      | N.D.        | 0.4      | U |
| 76-01-7           | Pentachloroethane           | N.D.        | 1.8      | U |
| 135-98-8          | sec-Butylbenzene            | N.D.        | 0.4 (    | U |
| 99-87-6           | 4-Isopropyltoluene          | N.D.        | 0.3 l    | U |
| 541-73-1          | 1,3-Dichlorobenzene         | N.D.        | 0.4      | U |
| 106-46-7          | 1,4-Dichlorobenzene         | N.D.        | 0.5 l    | U |
| 104-51-8          | n-Butylbenzene              | N.D.        |          | U |
| 95-50-1           | 1,2-Dichlorobenzene         | N.D.        | 0.3 l    | U |
| 67-72-1           | Hexachloroethane            | N.D.        |          | U |
| 96-12-8           | 1,2-Dibromo-3-Chloropropane | N.D.        |          | U |
| 120-82-1          | 1,2,4-Trichlorobenzene      | N.D.        |          | U |
| 87-68-3           | Hexachlorobutadiene         | N.D.        |          | U |
| 91-20-3           | Naphthalene                 | Ŋ.D.        |          | U |
| 87-61-6           | 1,2,3-Trichlorobenzene      | N.D.        | 0.4 l    | U |

# 1B Semivolatile Organic Analysis Data Sheet

Table 3 8270 Target Compound

Lab Name: Ciba Remediatation Testing Lab. Test Code: LIMS Number: Lab Code: Matrix: (soil/water) Water Lab Sample Id .: 1000 S5042103.D Lab File Id.: Sample wt/vol Level: (low/med) Date Sampled: low 04/21/05 Date Analyzed: % Moisture: Dilution Factor: GC Column: DB-5MS I.D.: 0.25mm

| CAS NO.    | COMPOUND                      | RESULT ug/L | MDL ug/L    | Q   |
|------------|-------------------------------|-------------|-------------|-----|
| 62-75-9    | N-Nitrosodimethylamine        | N.D.        | 100.0       | Ü   |
| 110-86-1   | Pyridine                      | N.D.        | 100.0       | Ü   |
| 108-95-2   | Phenol                        | N.D.        | 11.5        | ំប៉ |
| 62-53-3    | Aniline                       | N.D.        | 14.3        | Ū   |
| 111-44-4   | bis (2-Chloroethyl) ether     | N.D.        | 10.9        | Ü   |
| 95-57-8    | 2-Chlorophenol                | N.D.        | 10.4        | U   |
| 541-73-1   | 1,3-Dichlorobenzene           | N.D.        | 17.6        | Ü   |
| 106-46-7   | 1,4-Dichlorobenzene           | N.D.        | 19.4        | Ú   |
| 100-51-6   | Benzyl Alcohol                | N.D.        | 12.2        | U   |
| 95-50-1    | 1,2-Dichlorobenzene           | N.D.        | 15.5        | U   |
| 95-48-7    | 2-Methylphenol                | N.D.        | 13.2        | U   |
| 39638-32-9 | bis (2-Chloroisopropyl) ether | N.D.        | 16.4        | U   |
| 106-44-5   | 4-Methylphenol                | N.D.        | 14.6        | Ű.  |
| 621-64-7   | N-Nitrosodi-N-propylamine     | N.D.        | 7,7         | U   |
| 67-72-1    | Hexachloroethane              | N.D.        | 16.7        | U i |
| 98-95-3    | Nitrobenzene                  | N.D.        | 13.2        | U   |
| 75-59-1    | Isophorone                    | N.D.        | 9.3         | U   |
| 88-75-5    | 2-Nitrophenol                 | N.D.        | 9.1         | U   |
| 105-67-9   | 2,4-Dimethylphenol            | N.D.        | 20.2        | U   |
| 111-91-1   | bis (2-Chloroethoxy) methane  | N.D.        | 9.3         | U   |
| 65-85-0    | Benzoic Acid                  | N.D.        | 14.9        | U   |
| 120-83-2   | 2,4-Dichlorophenol            | N.D.        | 12.7        | U   |
| 120-82-1   | 1,2,4-Trichlorobenzene        | N.D.        | 11.5        | , U |
| 91-20-3    | Naphthalene                   | N.D.        | 11.7        | Ü   |
| 106-47-8   | 4-Chloroaniline               | N.D.        | 14.6        | U   |
| 87-68-3    | Hexachlorobutadiene           | N.D.        | 11.2        | U   |
| 59-50-7    | 4-Chloro-3-methylphenol       | N.D.        | 18.2        | U   |
| 91-57-6    | 2-Methylnaphthalene           | N.D.        | 10.7        | U   |
| 77-47-4    | Hexachlorocyclopentadiene     | N.D.        | 11.9        | Ų   |
| 88-06-2    | 2,4,6-Trichlorophenol         | N.D.        | 11.9        | U   |
| 95-95-4    | 2,4,5-Trichlorophenol         | N.D.        | 15.1        | U   |
| 91-58-7    | 2-Chloronaphthalene           | N.D.        | 10.5        | U   |
| 88-74-4    | 2-Nitroaniline                | N.D.        | 13.0        | U   |
| 131-11-3   | Dimethyl Phthalate            | N.D.        | 4.4         | U   |
| 606-20-2   | 2,6-Dinitrotoluene            | N.D.        | 18.2<br>9.1 |     |
| 208-96-8   | Acenaphthylene                | N.D.        |             | U   |
| 99-09-2    | 3-Nitroaniline                | N.D.        | 34.6<br>7.2 | U   |
| 83-32-9    | Acenaphthene                  | N.D.        | 17.6        | Ü   |
| 51-28-5    | 2,4-Dinitrophenol             | N.D.        |             | 7 * |
| 100-02-7   | 4-Nitrophenol                 | N.D.        | 34.6        | Ü   |
| 121-14-2   | 2,4-Dinitrotoluene            | N.D.        | 14.8        | U   |
| 132-64-9   | Dibenzofuran                  | N.D.        | 7.9         | U   |

# 1B Semivolatile Organic Analysis Data Sheet

| Lab Name: Ciba Rer   | nediatation | Testing Lal | b. | Test Code:       | 8270-w          |
|----------------------|-------------|-------------|----|------------------|-----------------|
| Lab Code:            |             |             |    | LIMS Number:     | 4646            |
| Matrix: (soil/water) | Water       |             |    | Lab Sample Id.:  | 38397 - 1/27/05 |
| Sample wt/vol        | 100         | ml          |    | Lab File Id.:    | S5042103.D      |
| Level: (low/med)     | low         |             |    | Date Sampled:    | 01/27/05        |
| % Moisture:          |             |             |    | Date Analyzed:   | 04/21/05        |
| GC Column: DB-5MS    | I.D.: 0.25  | mm          |    | Dilution Factor: | 10              |

| CAS NO.   | COMPOUND                     | RESULT üg/L | MDL ug/L | Q            |
|-----------|------------------------------|-------------|----------|--------------|
| 84-66-2   | Diethyl Phthalate            | N.D.        | 3.0      | Ü            |
| 7005-72-3 | 4-Chlorophenyl phenyl ether  | N.D.        | 6.0      | U            |
| 86-73-7   | Fluorene                     | N.D.        | 7.8      | U            |
| 100-01-6  | 4-Nitroaniline               | N.D.        | 19.4     | U            |
| 534-52-1  | 4,6-Dinitro-2-methylphenol   | N.D.        | 11.8     | U            |
| 86-30-6   | N-Nitrosodiphenylamine       | N.D.        | 4.0      | U            |
| 103-33-3  | Azobenzene                   | N.D.        | 6.4      | Ú            |
| 101-55-3  | 4-Bromophenyl phenyl ether   | N.D.        | 6.3      | U            |
| 118-74-1  | Hexachlorobenzene            | N.D.        | 6.4      | U            |
| 87-86-5   | Pentachlorophenol            | N.D.        | 19.4     | U            |
| 85-01-8   | Phenanthrene                 | N.D.        | 5.2      | U            |
| 120-12-7  | Anthracene                   | N.D.        | 4.6      | U            |
| 86-74-8   | Carbazole                    | N.D.        | 5.5      | U            |
| 84-74-2   | Di-n-butyl Phthalate         | N.D.        | 3.9      | U            |
| 206-44-0  | Fluoranthene                 | N.D.        | 3.9      | U            |
| 92-87-5   | Benzidine                    | N.D.        | 200.0    | U            |
| 129-00-0  | Pyrene                       | N.D.        | 4.8      | Ū            |
| 85-68-7   | Butylbenzyl Phthalate        | N.D.        | 3.7      | Ú            |
| 91-94-1   | 3,3-Dichlorobenzidine        | N.D.        | 14.2     | U            |
| 56-55-3   | Benz (a) anthracene          | N.D.        | 3.9      | U            |
| 117-81-7  | Bis (2-ethylhexyl) Phthalate | N.D.        | 13.6     | Ü            |
| 218-01-9  | Chrysene                     | N.D.        | 6.6      | U            |
| 117-84-0  | Di-n-octyl Phthalate         | N.D.        | 8.3      | , <b>U</b> . |
| CG-600-03 | Benzo (b+k) fluoranthene     | N.D.        | 6.9      | Ú            |
| 50-32-8   | Benzo (a) pyrene             | N.D.        | 7.8      | U.           |
| 193-39-5  | Indeno (1,2,3-cd) pyrene     | N.D.        | 7.3      | Ú            |
| 53-70-3   | Dibenz (a,h) anthracene      | N.D.        | 7.3      | U            |
| 191-24-2  | Benzo (ghi) perylene         | N.D.        | 10.1     | Ü            |

# Table 4 6010B Target Analyte

**Table B4-2**Metals Compound List (TAL)

|                        | Wa          | ters       | Soi          | ls**        |
|------------------------|-------------|------------|--------------|-------------|
| Analyte                | LOQ* (mg/L) | MDL (mg/L) | LOQ* (mg/kg) | MDL (mg/kg) |
| Aluminum               | 0.2         | 0.041      | 20           | 2.96        |
| Antimony <sup>1</sup>  | 0.02        | 0.0085     | 2.           | 0.66        |
| Arsenic <sup>1</sup>   | 0.01        | 0.0049     | 1.           | 0.5         |
| Barium <sup>1</sup>    | 0.005       | 0.00042    | 0.5          | 0.032       |
| Beryllium¹             | 0.005       | 0.00034    | 0.5          | 0.059       |
| Cadmium <sup>1</sup>   | 0.005       | 0.00087    | 0.5          | 0.054       |
| Calcium                | 0.2         | 0.049      | 20           | 1.25        |
| Chromium <sup>1</sup>  | 0.005       | 0.0022     | 0.5          | 0.2         |
| Cobalt <sup>1</sup>    | 0.005       | 0.0016     | 0.5          | 0.14        |
| Copper <sup>1</sup>    | 0.01        | 0.0021     | 1.           | 0.19        |
| Iron <sup>1</sup>      | 0.2         | 0.045      | 20           | 4.89        |
| Lead <sup>3</sup>      | 0.003       | 0.0012     | 1,           | 0.08        |
| Magnesium              | 0.1         | 0.018      | 10           | 1.98        |
| Manganese <sup>1</sup> | 0.005       | 0.00051    | 0.5          | 0.038       |
| Mercury <sup>2</sup>   | 0.0002      | 0.00016    | 0.1          | 0.0028      |
| Nickel <sup>1</sup>    | 0.01        | 0.0038     | 1.           | 0.2         |
| Potassium              | 0.5         | 0.043      | 50           | 3.72        |
| Selenium <sup>1</sup>  | 0.01        | 0.0047     | 1.           | 0.47        |
| Silver¹                | 0.005       | 0.0018     | 0.5          | 0.15        |
| Sodium                 | 1.          | 0.46       | 100          | 47.2        |
| Thallium <sup>3</sup>  | 0.01        | 0.0074     | 2.           | 0.16        |
| Vanadium¹              | 0.005       | 0.0017     | 0.5          | 0.16        |
| Zinc <sup>1</sup>      | 0.005       | 0.0041     | 2.           | 0.18        |
| Cyanide, total⁴        | 0.005       | 0.01       | 0.18         | 0.5         |

<sup>&</sup>lt;sup>1</sup>Analyzed by Trace ICP

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQs and MDLs are evaluated annually and subject to change.

<sup>&</sup>lt;sup>2</sup>Analyzed by Cold Vapor

<sup>&</sup>lt;sup>3</sup>Analyzed by GFAA

<sup>&</sup>lt;sup>4</sup>Analyzed by automated spectrophotometer

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis, will be higher.

Acq On : 27 Jan 2006 2:37 pm

Sample : CCC - 50 ppb Misc : w,5,

MS Integration Params: MARK.P Quant Time: Jan 30 16:04 2006

8260 Surrogate List

Quant Results File: 01118260.RES

Table 5

Quant Method: C:\HPCHEM\1\METHODS\01118260.M (RTE Integrator)

Title : Ciba 8260 METHOD

Last Update : Wed Jan 11 15:17:54 2006

Response via: Initial Calibration

DataAcq Meth: 01118260

| Internal Standards             | R.T.  | QIon | Response | Conc Ur | nits  | Dev(Min) |
|--------------------------------|-------|------|----------|---------|-------|----------|
| 1) Pentafluorobenzene          | 14.73 | 168  | 883530   | 50.00   |       |          |
| 31) 1,4-Difluorobenzene        | 17.38 | 114  | 1311876  | 50.00   |       |          |
| 50) Chlorobenzene-d5           | 25.08 | 117  | 1130757  | 50.00   | _     |          |
| 62) 1,4-Dichlorobenzene-d4     | 31.11 | 152  | 644627   | 50.00   | ug/L  | -0.10    |
| System Monitoring Compounds    |       |      |          |         |       |          |
| 26) Dibromofluoromethane **sur | 15.21 | 113  | 484919   | 51.39   | ug/L  | -0.11    |
| Spiked Amount 50.000           |       |      | Recove   | ry =    | 102.  | 78%      |
| 43) Toluene-d8 **surr**        | 21.26 | 98   | 1422247  | 50.49   | ug/L  | -0.12    |
| Spiked Amount 50.000           |       |      | Recove   | ry =    | 100.9 | 988      |
| 49) 4-Bromofluorobenzene **sur | 28.10 | 95   | 627603   | 44.90   | ug/L  | -0.10    |
| Spiked Amount 50.000           |       |      | Recove   | ry =    | 89.8  | 30%      |
| Target Compounds               |       |      |          |         |       | Qvalue   |
| 2) Dichlorodifluoromethane     | 5.41  | 85   | 505959   | 43.51   | ug/L  | 93       |
| 3) Chloromethane               | 5.97  | 50   | 498072   | 36.42   | ug/L  | 97       |
| 4) Vinyl Chloride              | 6.20  | 62   | 2.05375  | 35.02   | ug/L  | 92       |
| 5) Bromomethane                | 7.25  | 96   | 183524   | 30.36   | ug/L  | 94       |
| 6) Chloroethane                | 7.41  | 64   | 229915   | 33.92   | ug/L  | 98       |
| 7) Trichlorofluoromethane      | 8.04  | 101  | 439909   | 35.52   | ug/L  | 100      |
| 8) Diethyl Ether               | 8.71  | 59   | 397544   | 43.60   | ug/L  | 99       |
| 9) Acetone                     | 9.24  | 4.3  | 214228   | 40.81   | ug/L  | 92       |
| 10) 1,1-Dichloroethene         | 9.62  | 96   | 363512   | 48.58   | ug/L  | 98       |
| 11) Methyl Iodide              | 10.49 | 142  | 599792   | 49.10   | ug/L  | · 96     |
| 12) Allyl Chloride             | 10.55 | 41   | 700960   | 45.06   | ug/L  | 97       |
| 13) Carbon Disulfide           | 11.04 | 76   | 1536074  | 49.63   | ug/L  | 100      |
| 14) Methylene Chloride         | 10.84 | 84   | 480074   | 46.44   | ug/L  | 94       |
| 15) Acrylonitrile              | 11.12 | 52   | 292124   | 80.43   | ug/L  | 98       |
| 16) Methyl-t-butyl Ether       | 11.19 | 73   | 1129886  | 43.66   | ug/L  | 96       |
| 17) trans-1,2-Dichloroethene   | 11.63 | 96   | 450625   | 48.44   | ug/L  | 97       |
| 18) 1,1-Dichloroethane         | 12.71 | 63   | 792356   | 46.83   | _     | 97       |
| 19) 2-Butanone                 | 13.71 | 43   | 204243m  | 36.80   | ug/L  |          |
| 20) Propionitrile              | 13.90 | 54   | 617839m  | 379.73  | ug/L  |          |
| 21) 2,2-Dichloropropane        | 14.15 | 77   | 666967   | 47.58   | ug/L  | 94       |
| 22) cis-1,2-Dichloroethene     | 14.26 | 96   | 483963   | 47.93   | ug/L  | 96       |
| 23) Methacrylonitrile          | 14.41 | 67   | 168185   | 41.22   | ug/L  | 94       |
| 24) Methyl Acrylate            | 14.43 | 55   | 408990   | 41.19   | ug/L  | 99       |
| 25) Chloroform                 | 14.66 | 83   | 824786   | 46.10   | ug/L  | 95       |
| 27) Bromochloromethane         | 15.11 | 128  | 263709   | 48.74   | ug/L  | 98       |
| 28) Tetrahydrofuran            | 15.17 | 71   | 91215    | 75.32   | _     | 87       |
| 29) 1,1,1-Trichloroethane      | 15.71 | 97   | 654545   | 48.41   | _     | 95       |

Table 6

8270 Surrogate List

Data File: C;\HPCHEM\1\DATA\060127\SS060127.D

Acq On : 27 Jan 2006 6:39 pm

Sample : Second Source Known - 60 ng/uL

Misc

MS Integration Params: rteint.p

Quant Results File: 01278270.RES Quant Time: Jan 30 9:14 2006

Quant Method: C:\HPCHEM\1\METHODS\01278270.M (RTE Integrator)

Title : Ciba 8270/525.2 METHOD Last Update: Mon Jan 30 09:06:16 2006
Response via: Initial Calibration
DataAcq Meth: 01278270

|            | Internal Standards                               | R.T.                             | QIon                                    | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conc Units De              | v(Min)              |
|------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|
|            | 1) 1,4-Dichlorobenzene-d4                        | 12.55                            | 152                                     | 935394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.00 ng/uL                | -0.01               |
| -          | 19) Naphthalene-d8                               | 15.16                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.00 ng/uL                | -0.01               |
| 35         | 34) Acenaphthene-d10                             | 18.79                            |                                         | 2207099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.00 ng/uL                | -0.01               |
| 19         | 55) Phenanthrene-d10                             | 21.90                            |                                         | and the second of the second o | 40.00 ng/uL                | -0.01               |
| <b>∑</b> & | 67) Chrysene-d12                                 | 27.64                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.00 ng/uL                | -0.02               |
|            | 77) Perylene-d12                                 | 33.01                            | 264                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.00 ng/uL                | -0.02               |
|            |                                                  |                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |
|            | System Monitoring Compounds                      | ining diagrams.<br>Ngjarjangsing |                                         | er i de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                     |
|            | 4) 2-Fluorophenol **surr**                       | 10.09                            | 112                                     | 5983775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 198.01 ng/uL               | -0.01               |
|            | Spiked Amount 200.000                            |                                  |                                         | Recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry = 99.01                 | 9                   |
| ,          | 5) Phenol-d6 **surr**                            | 11.99                            | 99                                      | 8767187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201.30 ng/uL               | -0.01               |
|            | Spiked Amount 200.000                            |                                  |                                         | Recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry = 100.65                | ફ                   |
| 8          | 20) Nitrobenzene-d5 **surr**                     | 13.74                            | 82                                      | 4351408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.48 ng/uL                | -0.01               |
|            | Spiked Amount 100.000                            |                                  |                                         | Recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry = 93.48                 | ફ                   |
|            | 38) 2-Fluorobiphenyl **surr**                    | 17.37                            | 172                                     | 7639824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.63 ng/uL                | 0.00                |
| Ş          | Spiked Amount 100.000                            |                                  | a selfin i te                           | Recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 8                   |
| . ⋧        | 54) 2,4,6-Tribromophenol **sur                   | 20.48                            | 330                                     | 1373053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.88 ng/uL               | 0.00                |
| V)         | Spiked Amount 200.000                            |                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ry = 99.94                 |                     |
|            | 70) Terphenyl-d14 **surr**                       | 25.16                            | 244                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.22 ng/uL                |                     |
|            | Spiked Amount 100.000                            |                                  |                                         | Recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry = 92.22                 | 8                   |
|            |                                                  |                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |
|            | Target Compounds                                 |                                  | · · · · · · · · · · · · · · · · · · ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | value               |
|            | 2) N-Nitrosodimethylamine                        |                                  |                                         | 859482m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57.09 ng/uL                |                     |
|            | 3) Pyridine                                      | 6.93                             | 79                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.14 ng/uL                | 1 4 m <u>2 j</u> t. |
|            | 6) Phenol                                        | 12.01                            | 94                                      | 2553021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.11 ng/uL                | 75                  |
|            | 8) bis (2-Chloroethyl) ether                     | 12.03                            | 93                                      | 2232442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.76 ng/uL                | 94                  |
|            | 9) 2-Chlorophenol                                | 12.23                            | 128                                     | 1736937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.88 ng/uL                | 99                  |
|            | 10) 1,3-Dichlorobenzene                          | 12.43                            | 146                                     | 2022127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.25 ng/uL                | 98                  |
|            | 11) 1,4-Dichlorobenzene                          | 12.59<br>12.94                   | 146<br>108                              | 2037690<br>1072847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56.33 ng/uL                | 99<br>93            |
|            | 12) Benzyl Alcohol<br>13) 1,2-Dichlorobenzene    | 12.94                            | ** *                                    | 1850136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.57 ng/uL<br>56.21 ng/uL | 93<br>98            |
|            | 14) 2-Methylphenol                               | 13.16                            |                                         | 1408168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.78 ng/uL                | 98                  |
|            | 15) bis (2-Chloroisopropyl) et                   | 13.10                            | 45                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.01 ng/uL                | 98                  |
|            | 15) Dis (2-chiolossoplopy) et 16) 4-Methylphenol | 13.49                            |                                         | 2030351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.14 ng/uL                | 99                  |
|            | 17) N-Nitrosodi-N-propylamine                    | 13.42                            | 70                                      | 1420639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 96                  |
|            | 10) N-NICLOSOGI-N-PLOPYIAMINE                    |                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.03 ng/uL                |                     |
| 3. ;       | 18) Hexachloroethane                             | 13.55                            |                                         | 896906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.03 ng/uL                | 99                  |
|            | 21) Nitrobenzene                                 | 14.28                            | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 2188175m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.44 ng/uL                | 0.0                 |
|            | 22) Isophorone                                   | 14.20                            | 0Z                                      | 3684602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 99                  |
|            | 23) 2-Nitrophenol                                | 14.40                            | 139                                     | 1048752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.18 ng/uL                | 99                  |
|            | 24) 2,4-Dimethylphenol                           | 14.52                            |                                         | the state of the s | 54.84 ng/uL                | 96                  |
|            | 25) bis (2-Chloroethoxy) metha                   | 14.64                            | 93                                      | 2340927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.65 ng/uL                | 100                 |
|            |                                                  |                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |

<sup>(#) =</sup> qualifier out of range (m) = manual integration \$\$060127.D 01278270.M Tue Jan 31 08:53:55 2006

# A A C H M E N T S

A AC #1 Н M E N

# 7.1 CPS/Madison Groundwater Contaminant Distribution Characterization

# 7.1.1 Purpose

The purpose for this Section is to provide a characterization of the groundwater contamination attributable to the CPS/Madison Site based on available local and regional hydrogeological and water quality data. With this information, the effectiveness of the pump-and-treat systems is also assessed.

# 7.1.2 Implementation

The first step is to compile a characterization database. The following information was compiled:

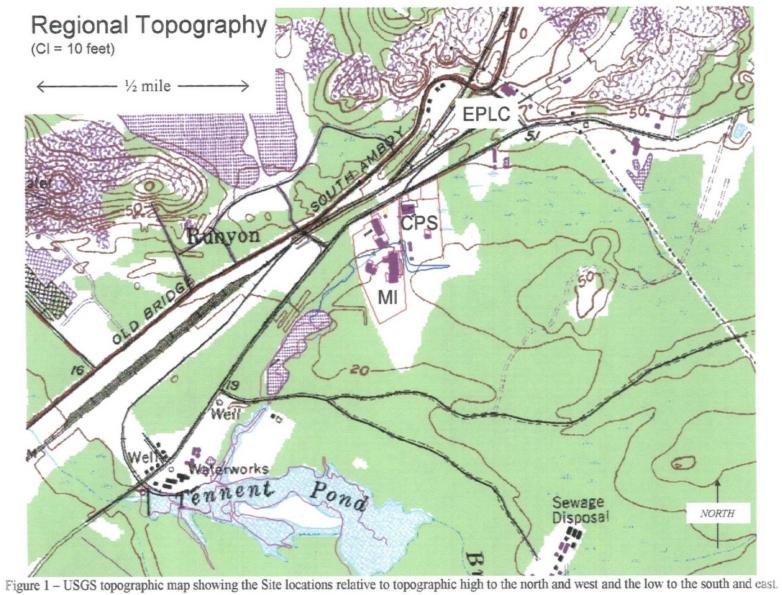
- 1. Regional GIS (NJ and USGS internet archives)
  - Topographic maps
  - Air photos
  - Watersheds
  - Surface water (streams, lakes, wetlands)
  - Land use
- 2. Existing historical Site-related documentation
  - Evor Philips Leasing Company (EPLC) Site Data
    - i. Supplemental GW RI Report (5/2004)
    - ii. NPL Site Amendment No. 1 (5/2005)
  - CPS/Ciba (CPS) Site Data
    - 1. RI Reports (Phase 1, 1/94 and Phase 2, 5/96)
    - 2. PMP reports (WQ from 1991 to 2004).
    - 3. Natural Attenuation Report (2002)
  - Madison Industries (MI) Site Data
    - i. RI Report (9/96)
    - ii. PMP reports (WQ from 1997 to 12/2004 [report 55])

In addition to these historical documents, the following recently compiled data was included:

- 3. Conduct special characterization sampling (Ciba)
  - Geoprobe profiling VOC (5/03 and 7/05)
  - Metals and VOC at monitoring wells not currently on SAMP (on and off CPS property) [12/04 and 3/05]

These data were combined using visualization software to derive plume impact zones (plan view and depth) based on

- Regional flow (regional GIS, water supply pumping).
- Local flow, based on water level data and pump well locations and extraction rates.
- Locations of source areas.
- Spatial and temporal trends in water quality at monitoring wells.


# 7.1.3 Hydrogeology

For the purposes of this discussion, the aquifer associated with the contaminant plume is assumed to be relatively homogeneous and unconfined, consisting of unconsolidated sands, silts and clays (see Section 3.2).

Figure 1 shows the Site relative to the regional topography. Note that there is a topographic high to the north and west of the Site, and the slope drops along the principle drainage-way (toward Tennent Pond). Figure 2 presents the implied regional surface water and groundwater flow patterns based on GIS watershed boundary and surface water drainage layers, and the locations of the Perth Amboy water supply wells (PA-series). Note that the natural groundwater flow direction away from the CPS/Madison Site is along the Prickets Brook drainage way. The Perth Amboy supply wells, pumping at a rate of approximately 2.5 million gallons per day, are shown to skew the flow lines off their natural path. Data supporting this feature are discussed below.

An important component for understanding past and present contaminant distribution is a characterization of aquifer stress conditions (e.g., pumping wells and surface water) over time. Figure 3 provides a summary of 'early' stress conditions. It shows what can be considered the first-generation pump-and-treat well configuration (see Section 2.2.4). Figure 4 shows the current pumping stress configuration. These are the regional wells that are assumed to have influence on contaminant distribution in groundwater.

By combining the data shown in Figures 1 through 4, with the water level data from the CPS/Madison PMP and the EPLC monitoring program, a regional groundwater flow net can be drawn (Figure 5). This flow net is assumed to be relatively constant given the current stress configuration.



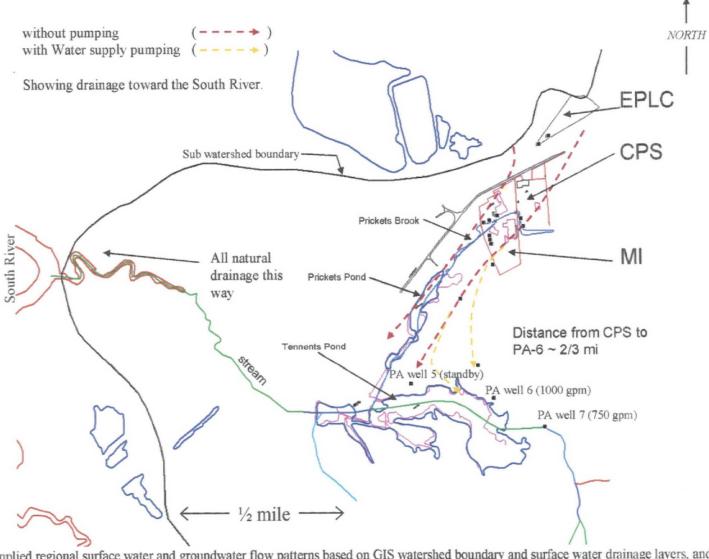



Figure 2 – Implied regional surface water and groundwater flow patterns based on GIS watershed boundary and surface water drainage layers, and the locations of Public Supply wells (PA-series). The blue, red and green lines represent surface water expression.

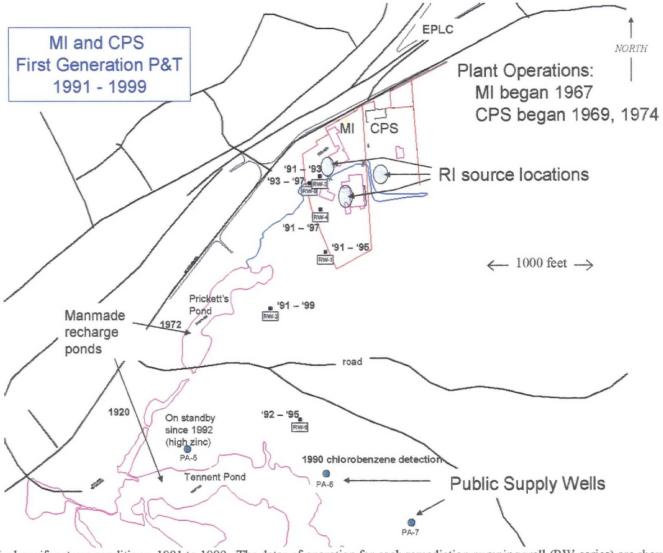



Figure 3 – Historical aquifer stress conditions, 1991 to 1999. The dates of operation for each remediation pumping well (RW-series) are shown. Some relevant site history is also provided.

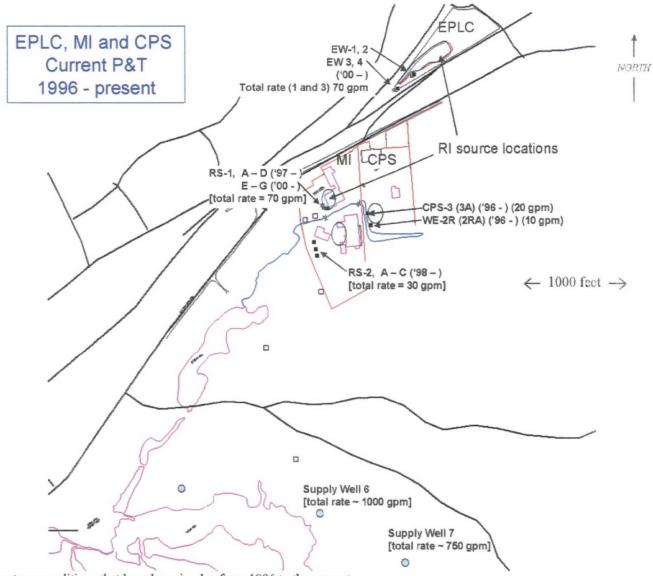



Figure 4 - Aquifer stress conditions that have been in play from 1996 to the present.

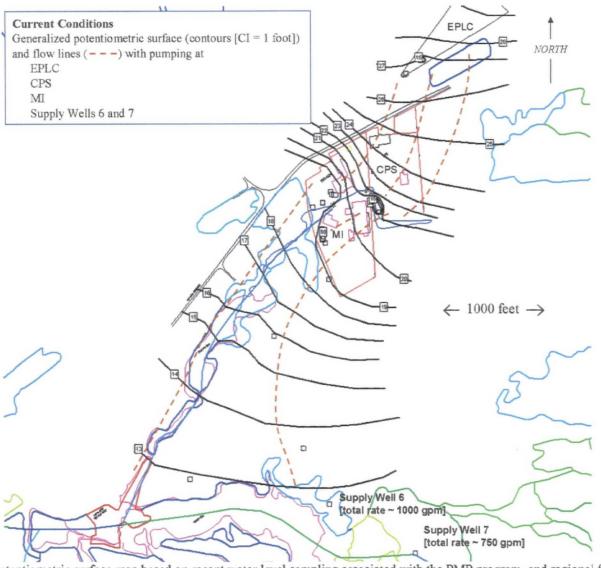



Figure 5 – Generalized potentiometric surface map based on recent water level sampling associated with the PMP program, and regional flow conditions presented in Figure 2. The blue, red and green lines represent surface water expression.

# 7.1.4 Identify site-Specific Compounds

As shown in Figures 5 and 6, groundwater contamination at and downgradient of the CPS/Madison Site is the result of contaminant source and transport conditions associated with three independent sites located along the regional groundwater flow lines. These sites are, from upgradient to downgradient: EPLC, CPS and MI.

From analysis of the Site-specific water quality databases available form RI and PMP reports, the following site-specific compounds have been identified:

Madison Industries - Metals

Zinc Copper

Lead

Cadmium

CPS – Volatile Organic Compounds (VOCs)

Chlorobenzene (CB)

Dichlorobenzene (DCB)

BTEX

• EPLC - VOCs

1,2-Dichloroethane (12DCA)

Methylene Chloride (MeCl)

TCE

cis-1,2-Dichloroethylene (cis-12DCE)

Note that both EPLC and CPS are characterized based on VOC contamination, while MI is characterized based on metals contamination.

# 7.1.5 VOC-Plume Characterization

The total VOC plume (TVOC) at and downgradient of the CPS/Madison Site is generally the sum of the contribution from both the EPLC and CPS Sites (Figure 6). Figure 7 shows an interpretation of the TVOC plume at the site level based on source area, hydrologic and water quality data (2004 CPS data and 2003 EPLC data). The plume appears to be 30 to 50 feet below ground surface (BGS).

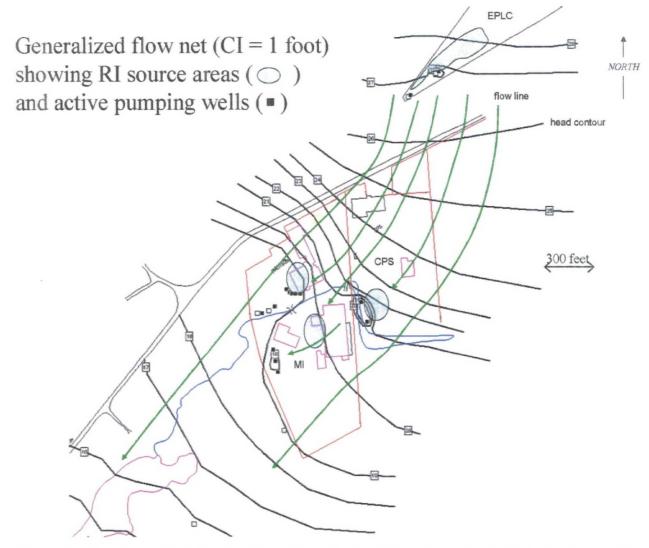



Figure 6 – Ground water flow net based on site-specific data and an interpretation of regional flow patterns, showing the hydraulic connection of the three sites affecting groundwater quality.

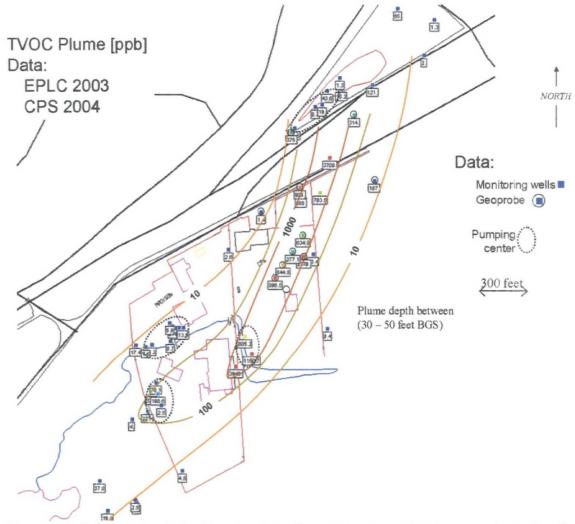



Figure 7 – Interpretation of the total VOC plume at the site level based on data relevant to source area location, groundwater flow direction, water quality. The TVOC data shown are form recent groundwater monitoring (wells and geoprobe).

To understand the contribution to groundwater contamination from the CPS site, consider the 'fingerprint' compounds identified in the previous section. Figure 8 provides a representation of the data, where the TVOC concentration was normalized by the sum of the EPLC compounds identified (12DCA, MeCl, TCE, cis-12DCE). If data points >90% are indicative of EPLC mass, and the groundwater flow field is well characterized, then it is clear that the CPS plume emanates from the general source area location shown, and that mass upgradient and side-gradient of this source area are attributable to EPLC. This conclusion is further enforced by plotting the 12DCA and CB plumes (Figures 9 and 10, respectively), where the 12DCA plume is attributed to EPLC and the CB plume is attributed to CPS. The plumes do not overlap except at and downgradient of the CPS source area.

The CPS plume can be further characterized by first characterizing near-field data and then characterizing far-field, downgradient, data. Figure 11 provides recent CB data just downgradient of the CPS source area. The plot shows the CB result at monitor well CPS-1 over time. It is interesting to note that the concentration increased after the pumping well, WE-2R was moved about 15 feet north and east (WE-2RA) because of operation problems. Note that the new well pumps at twice the rate as the former (~15 GPM versus ~7 GPM). To investigate this observation further, a geoprobe transect was taken along the CPS-1 side of the drainage ditch that separates the CPS onsite pumping center (CPS-3A and WE-2RA) from the downgradient transport direction. The results are summarized in Figure 12. Significant mass of CB, DCB and benzene was found to occur at least 50 feet on either side of CPS-1. This mass had limited extent vertically, located between 25 and 35 feet below ground surface.

To facilitate comparison of the CPS-1 data with that associated with the pumping wells, CPS-3A and WE-2RA, Figure 12 provides water quality time-history plots for the pumping wells. While the composition of the mass is similar across the drainage ditch, the magnitude is not. Thus, it is not clear whether the mass observed at CPS-1 is due to incomplete capture of the characterized source area or there is source material downgradient of the pump-and-treat capture envelope.

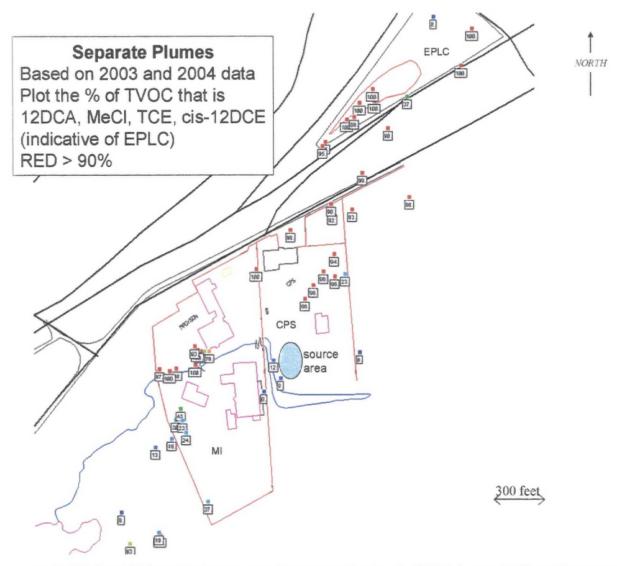



Figure 8 - In an effort to separate the EPLC and CPS contributions to groundwater contamination, the TVOC data used in Figure 7 was normalized by the sum of "EPLC compounds." Red data points (>90% EPLC compounds) are considered part of the EPLC plume.

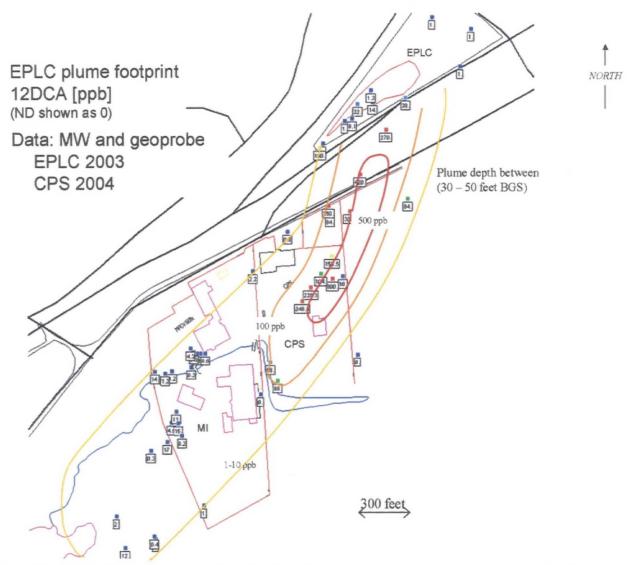



Figure 9 - Interpretation of the 12DCA plume at the site level based on data relevant to source area location, groundwater flow direction, and water quality. The data are the same as were used in Figures 7 and 8.

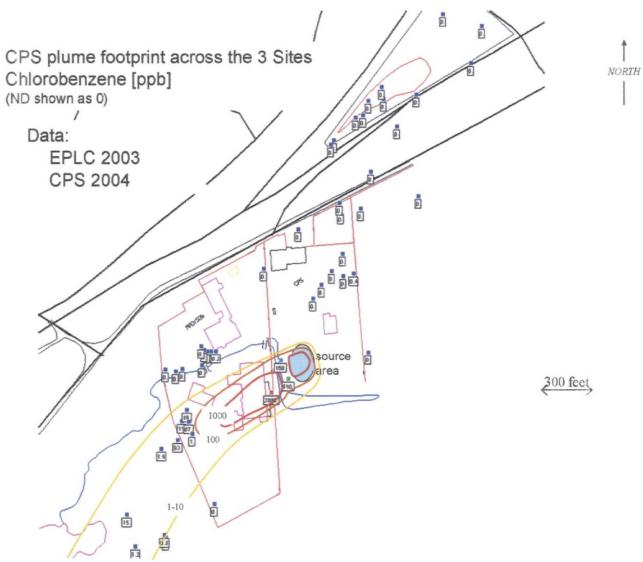



Figure 10 - Interpretation of the CB plume at the site level based on data relevant to source area location, groundwater flow direction, and water quality. The data are the same as were used in Figures 7 and 8.

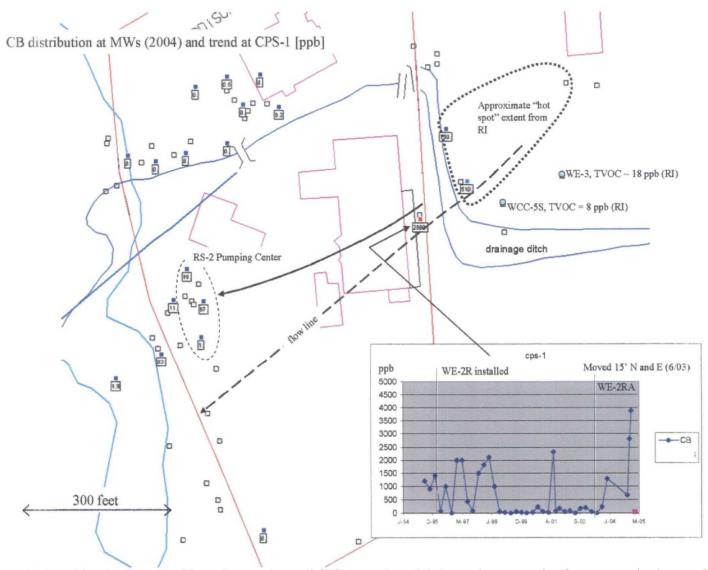



Figure 11 – Local CB data. The plot shows the CB result at monitor well CPS-1 over time. It is interesting to note that the concentration increased after the pumping well, WE-2R was moved (WE-2RA) because of operation problems. The new well pumps at twice the rate as the former (~15 GPM versus ~7 GPM).

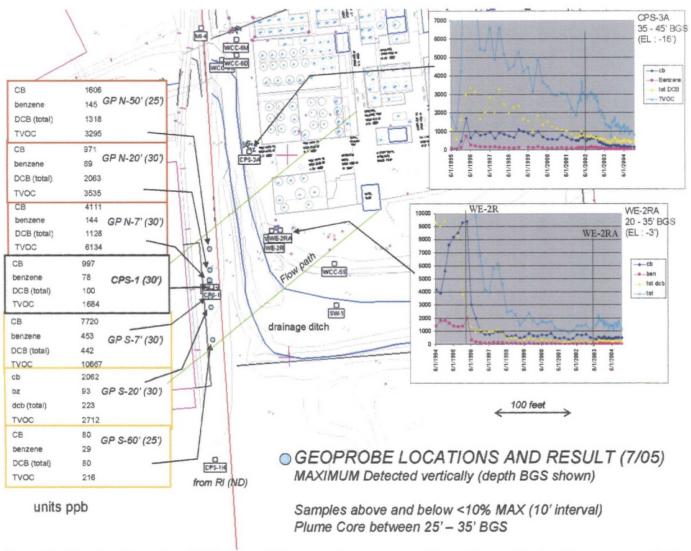



Figure 12 – Based on the result at CPS-1 (Figure 11), a geoprobe transect was taken as shown. The data shown represent the largest detect at each location, and this depth was consistently between 25 and 35 feet BGS. Note, most of the mass consists of CB, DCB and benzene. The water quality time-history at the two pumping wells is also shown. There is clearly a discrepancy in concentration magnitude on either side of the drainage ditch.

Combining the recent monitoring well data with the geoprobe result (Figure 12), a local CB plume map is presented in Figure 13. Note that not all the plume is shown to be captured by the MI pump-and-treat (RS-2A, B, C). This is based primarily on water quality data, where the CB concentration is 67 ppb at RS-2B and 2800 ppb at CPS-1, 500 feet upgradient. However, note that the concentration increase at CPS-1 occurred after 6/03 (see Figure 11), and that data shown in Figure 13 were collected approximately 18 months later. Because the distance between CPS-1 and RS-2B is approximately 500 feet and the groundwater velocity is assumed to be between 0.5 and 1 foot/day, the front associated with the observed increase may have yet to reach the MI pumping center.

A characterization of the flow path and contaminant distribution along the plume length can be achieved by combining time history water quality plots at spatially distributed monitoring points with pumping well operation data. This is because the operation of pumping wells perturbs the hydrologic system (i.e., deflects flow lines), and thus has the potential to affect the water quality monitoring record.

To this end, Figure 14 provides time history TVOC plots for several wells downgradient of the CPS Site. RW-1 is a former pumping well that operated until 1996. Other pumping wells that influence flow in the area are RW-4 and RS-2 (operation interval shown). The trend in contaminant levels can be attributed to effects from pumping, assuming that pumping affects the flow as shown. This interpretation supports the conclusion that the plume has historically been migrating between wells PA-B and WCC-12.

Figure 15 provides a similar analysis further downgradient. RW-2 and RW-5 are former pumping wells, their operation intervals shown. The data support the plume outline shown. The deflection of the plume toward PA-6 (Perth Amboy supply well) and away from the natural drainage (see Figure 5) is due to supply well extraction rates (totaling ~2.5 MGD).

An interpretation of the footprint of the CPS plume as it exists today is shown in Figure 16. This is derived from all the information presented previously. The outline is similar to that presented in the recent CPS PMP reports. The data show that the plume is about 30 feet BGS near the source, and as it travels toward the pumping center, it reaches depths of 60-80 feet BGS (at the elevation of the PA wells).

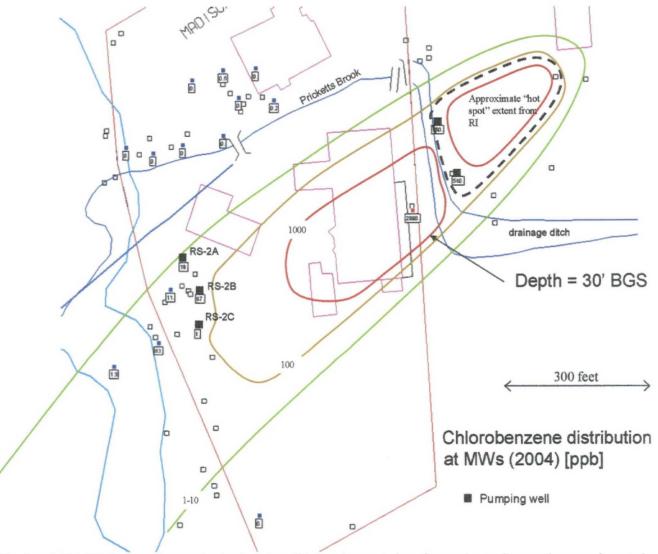



Figure 13 – Local CPS VOC plume characterization based on CB data, interpretation of groundwater flow, and source characterization. This is consistent with that shown in Figure 10.

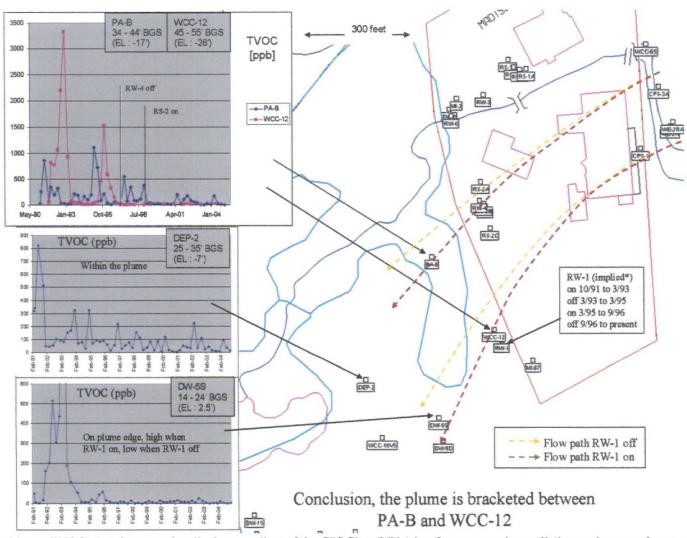



Figure 14 – Time history TVOC plots for several wells downgradient of the CPS Site. RW-1 is a former pumping well (\*operation records not available). The trend in contaminant levels can be attributed to effects from pumping, assuming that pumping affects flow as shown. This interpretation supports the conclusion that the plume has historically been migrating between wells PA-B and WCC-12. The operation of pumping wells RW-4 and RS-2 is also indicated.

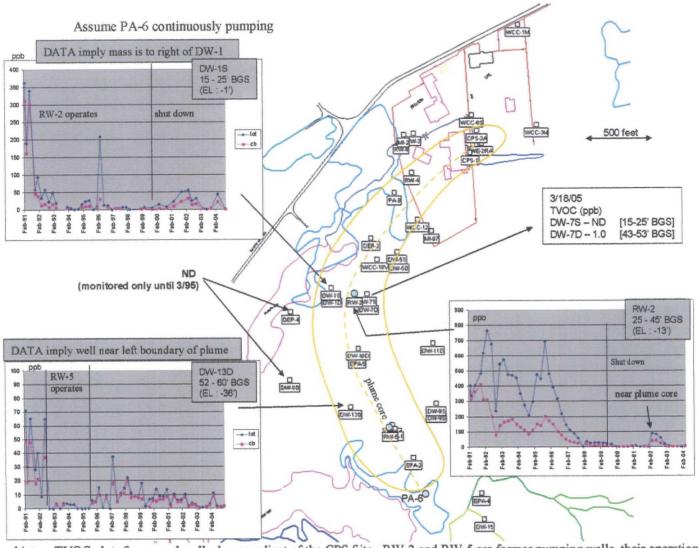



Figure 15 - Time history TVOC plots for several wells downgradient of the CPS Site. RW-2 and RW-5 are former pumping wells, their operation intervals shown. The data support the plume outline shown. The deflection of the plume toward PA-6 (Perth Amboy supply well) and away from the natural drainage (see Figure 5) is due to supply well extraction rates (totaling ~2.5 MGD).

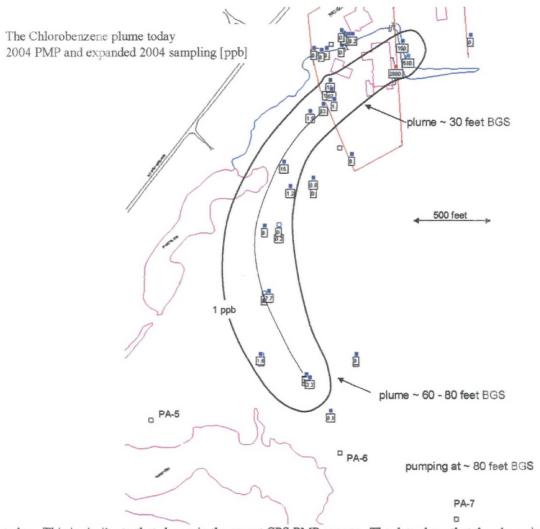



Figure 16 – The CB plume today. This is similar to that shown in the recent CPS PMP reports. The data show that the plume is about 30 feet BGS near the source, and as it travels toward the pumping center, reaches depths of about 80 feet BGS (at elevation of pumping wells).

#### 7.1.6 Metals Plume Characterization

As discussed in Section 4, the metals plume is uniquely associated with the Madison Industries (MI) site. In particular, the following metals are associated with MI source areas: zinc, copper, lead and cadmium. Of these, the database suggests that the MI plume can be characterized by zinc, and copper can be considered a secondary characterization compound.

As with the VOC plume, the metals plume characterization is based on source area, hydrology and water quality data. Figure 17 provides a location map for the potential source areas and the locations of the current pumping system (10 wells). The data is from the 1996 RI report. Figure 18 shows the metals mass at selected extraction wells. Zinc is dispersed across the site, and copper is located predominately on the southern half. These data support the RI source area locations.

Figure 19 shows the occurrence of metals downgradient of the MI site, to the south of the drainage way (Pricketts Brook). While the wells just downgradient of the pumping center show attenuation resulting from capture (PA-B and WCC-11S), the off-axis wells do not (DEP-2, MI-7 and WCC-5S).

Figure 20 shows the available zinc data downgradient of the MI site, along the Pricketts Brook and Pond drainage way. While there has been marked attenuation at the far downgradient well (KA-1S), attenuation at the other wells is less clear, mainly because data are sparse. Note that KA-1S is a shallow well (albeit at an unknown depth). The high concentration implies that this well is in a groundwater discharge area.

Finally, putting together the data provided above with the conceptual model for groundwater flow provides the basis for the plume map shown in Figure 21. The distribution is shown as two plumes because of the source area distribution and the potential groundwater divide afforded by the Pricketts Brook.

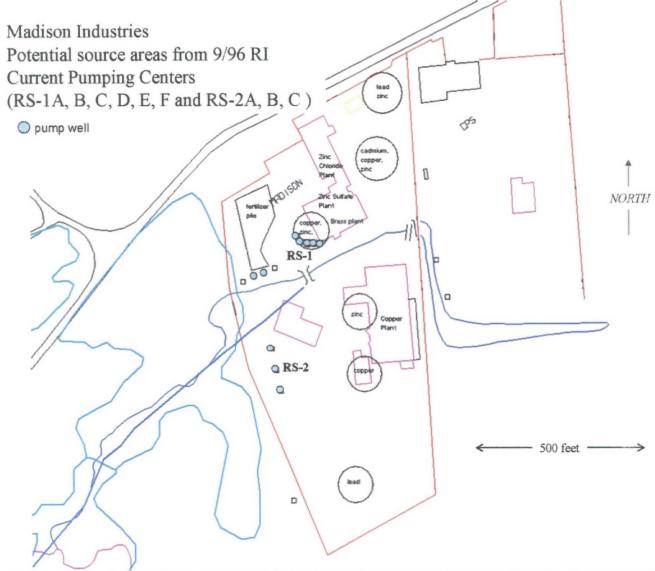



Figure 17 - Location map for potential source areas and the locations of the current pumping system (10 wells). Data form the 1996 RI.

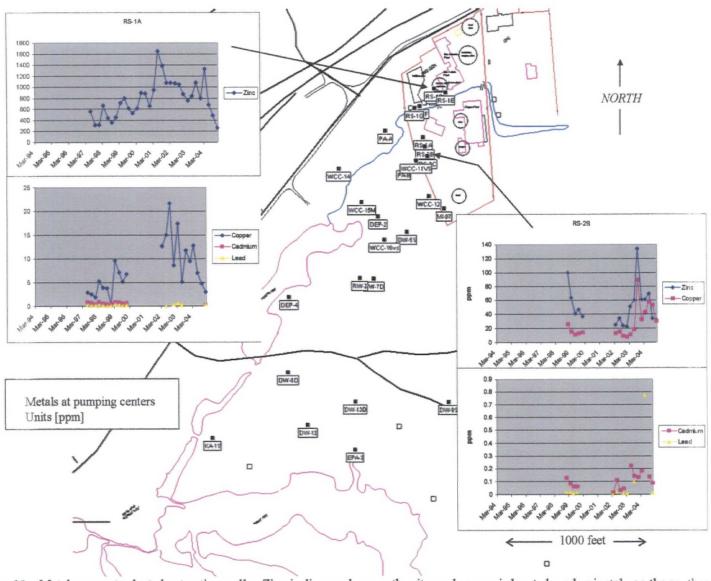



Figure 18 - Metals mass at selected extraction wells. Zinc is dispersed across the site, and copper is located predominately on the southern half.

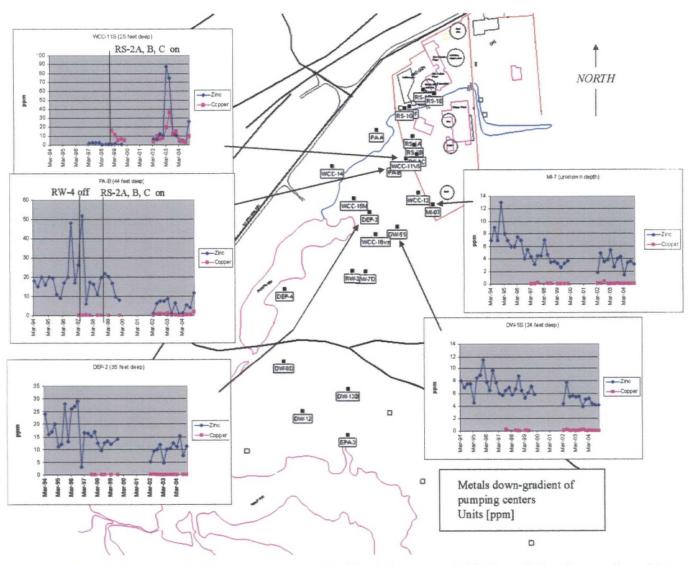



Figure 19 – The occurrence of metals downgradient of the MI site, to the south of the drainage way. While the wells just downgradient of the pumping center show attenuation resulting from capture (PA-B and WCC-11S), the off-axis wells do not (DEP-2, MI-7 and WCC-5S). Plot gaps indicate no data available.

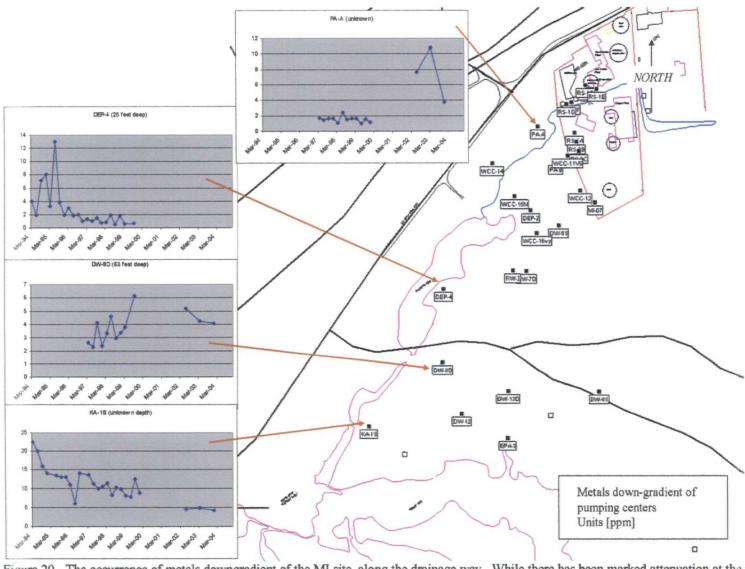



Figure 20 - The occurrence of metals downgradient of the MI site, along the drainage way. While there has been marked attenuation at the far downgradient well (KA-1S), attenuation at the other wells is less clear, mainly because data are sparse. Plot gaps indicate no data available.

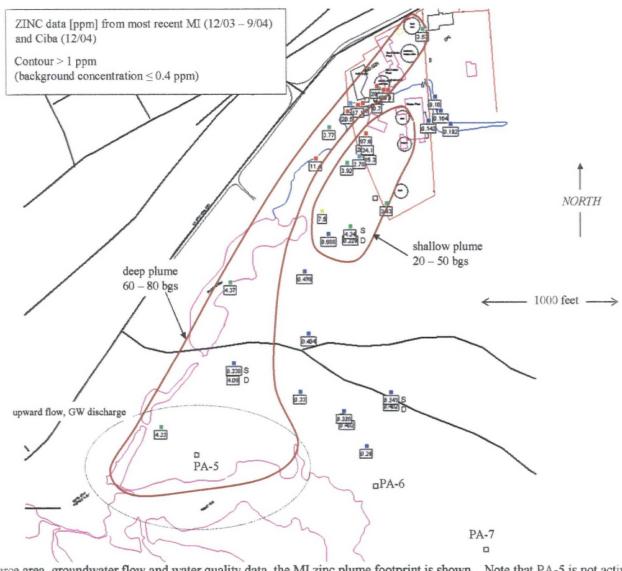



Figure 21 – Based source area, groundwater flow and water quality data, the MI zinc plume footprint is shown. Note that PA-5 is not active due to zinc contamination.

## 7.1.7 Effectiveness of Pump-and-Treat Systems

The CPS and MI pump-and-treat systems are extracting a substantial amount of mass as indicated by the concentrations measured over time (see Figures 12 and 18). In this regard, the P&T is providing a valuable service (mass extraction).

However, it is clear that a significant amount of VOC mass is crossing the CPS property line near CPS-1 (Figure 12). While these are similar compounds as are found in the extraction wells, based on concentration magnitude both in extracted groundwater and in the characterized source area, it is not clear whether this mass is associated with the characterized source area or is associated with an unknown source. Further investigation is required to characterize not only the capture character of the P&T system, but the source area as well.

With regard to the MI P&T, there is an insufficient amount of data to assess the capture efficiency. Clearly RS-2 wells are providing effective local capture. However, it appears that mass is getting by south of these wells. While the RS-1 wells are extracting high concentrations, there is insufficient data to support a capture characterization.

#### 7.1.8 Conclusion

This section presented an analysis for characterizing the nature and extent of contamination associated with the CPS/Madison Site. The characterization was achieved by combining data relevant to source area characterization, hydrogeology, the time-history of aquifer stress conditions, and groundwater contaminant time trends. While the VOC plume and the metals plume characterizations were presented separately, the interpretations and assumptions used for both are self-consistent.

The VOC plume is assumed to be unique to the CPS Site. The following conclusions are drawn from the analysis (pending further investigation):

- The plume is characterized spatially by chlorobenzene.
- Distribution of CPS mass is consistent with identified source area, groundwater flow and water quality data.
- There is significant VOC mass (CB, DCB, Benzene) crossing CPS property line near CPS-1.
- MI P&T (wells RS-2) does not appear to be capturing the entire CPS plume.

- Additional characterization is warranted for source and transport of mass found near CPS-1.
- Current CPS P&T is capturing the EPLC VOC plume.
- There is no evidence of metals contamination on CPS property.

The metals plume is assumed to be unique to the MI Site. The following conclusions are drawn from the analysis (pending further investigation):

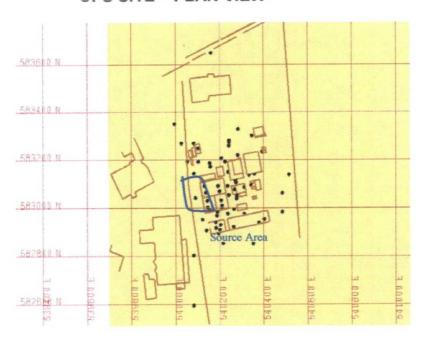
- Zinc is the primary fingerprint compound which defines plume distribution.
- The capture system is removing significant mass (zinc and copper).
- Mass may be getting by the RS-2 group wells to south.
- Offsite contamination is attenuating.
- Metals contamination does not appear to be affecting supply wells 6 and 7, and appears to affect well 5.
- No evidence of metals contamination on CPS property (up-gradient).
- MI P&T is capturing VOC mass from EPLC and CPS.

Additional data needs to be collected to fill data gaps and verify the conceptual model for contaminant source, transport and fate.

#### 7.2 Source Area Soil Characterization

As discussed in previous sections, the CPS RI was completed in three phases (Phase I, Phase II and Phase III). A Draft Feasibility Study was submitted by Ciba in May of 2001. As a result of the RI and FS, contaminated soils were delineated in all areas of the site except for soils beneath the tank farms on the site. Plant operations prevented access to tank farm soils during the RI and FS and were therefore only sparsely characterized. However, the plant closed in 2001 and operations in the tank farm ceased thereby opening access to tank farm subsurface soils for the 2003 additional soil and source area characterization.

Ciba Specialty Chemicals Inc. submitted a Sampling and Analyses Work Plan to the New Jersey Department of Environmental Protection (NJDEP) on July 28, 2003. NJDEP approved the work plan and an initial phase of the work plan was implemented in October 2003. A second phase of fieldwork was conducted in December 2003. The purpose of these field activities was to collect additional soil samples from source areas beneath the site to provide additional characterization of soils beneath the tank farm areas. The data supplemented the previously collected RI / FS data.

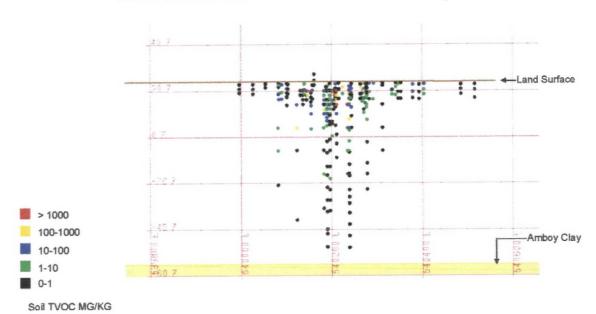

A total of 28 borings were conducted at the site in 2003. 129 soil samples were collected during the two phases. The initial round of sample collection was conducted by A.C. Shultes, Inc. using split-spoon sample collection methods. The second round of sample collection was done by CT & E, Inc. using geoprobe coring techniques. The split-spoons and cores were screened with a handheld Photo Ionization Detector (PID) to locate the highest concentration along the 2-foot core. Samples were collected from the 1-foot interval that emitted the highest VOC screening results. Note that utilization of this screening technique results in the collection of samples that are biased high in relation to the full length of the spoon. All samples collected were extracted with methanol in the field and sent to Lancaster Laboratory for analysis by EPA Method SW846 – 8260. Samples were collected from depths as deep as 72 feet below land surface. Most sample collection focused on the upper 20 feet of soil beneath the site. Six of the 28 borings penetrated deeper than 20 feet.

For ease of review, please note that the figures for this section are included within the section.

Boring locations for all source area and soil samples are depicted on Figure One in plan view. A cross section oriented with a south to north view is presented in Figure Two. The cross section shows color coded sample locations. Figure Three is a three dimensional view of the color coded sample locations oriented with a south to north view of sample locations and color coded TVOC concentrations. The water table is very shallow at the site. Depending on rainfall, the water table varies from near land surface to only a few feet below land surface. The greatest mass of contamination is located at shallow depths (within 10 to 15 feet below land surface). A summary table of all soil data is presented in Table One. An examination of the data in Table One indicates BTEX compounds, chlorobenzene and dichlorobenzenes are the most commonly detected compounds at the site.

The source area is depicted on Figure One. It contains approximately 30,000 cubic yards of material with TVOC concentrations between 10 mg/kg to 100 mg/kg. Approximately 10,000 cubic yards of material is between 100 mg/kg and 1000 mg/kg. There is about 500 cubic yards of material greater than 1000 mg/kg. Volumes were determined using a geostatistical block model.

## FIGURE ONE CPS SITE – PLAN VIEW



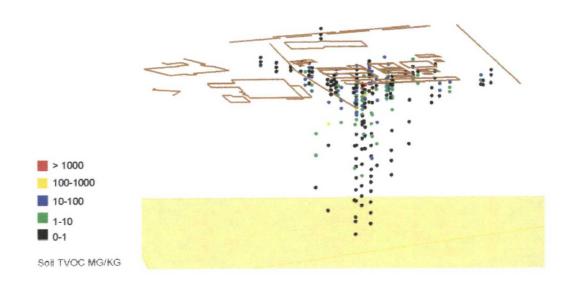

1 gif

## FIGURE TWO

## **CPS SITE**

Cross Section of Color-Coded TVOC Soil Samples




South to North Cross Section

7 gif

## FIGURE THREE

## **CPS SITE**

3D Grid of of Color-Coded TVOC Soil Samples



3 gif

TABLE ONE
Statistical Summary Of Source Characterization Data

| Chemical Name             | Detected | Max Result | Mean  | MCL   | NJDEP  |
|---------------------------|----------|------------|-------|-------|--------|
|                           | %        | mg/kg      | mg/kg | mġ/l  | IGWSCC |
|                           |          |            |       |       | mg/kg  |
| TOLUENE                   | 58       | 2200       | 25.09 | 1     | 500    |
| XYLENE (total)            | 46       | 550        | 8.00  | 1     | 10     |
| ACETONE                   | 40       | 45         | 1.93  | 0.7   | 100    |
| CHLOROBENZENE             | 34       | 310        | 2.65  | 0.05  | 1      |
| ETHYLBENZENE              | 30       | 77         | 1.64  | 0.7   | 100    |
| 1,2-DICHLOROBENZENE       | 28       | 2800       | 26,18 | 0.6   | 50     |
| 1,4-DICHLOROBENZENE       | 27       | 220        | 2.04  | 0.075 | 100    |
| BENZENE                   | 18       | 98         | 0.85  | 0.001 | 1      |
| METHYLENE CHLORIDE        | 14       | 350        | 4.73  | 0.003 | 1      |
| CIS-1,2-DICHLOROETHENE    | 10       | 150        | 2.49  | 0.07  | 1      |
| 1,3-DICHLOROBENZENE       | 10       | 27         | 0.67  | 0.6   | 100    |
| TETRACHLOROETHENE         | 8        | 19         | 0.93  | 0.001 | 1      |
| TRICHLOROETHENE           | 8        | 1200       | 13.45 | 0.001 | 1      |
| 1,2-DICHLOROETHANE        | 7        | 45         | 1.20  | 0.002 | 1      |
| 1,1,2,2-TETRACHLOROETHANE | 3        | 17         | 0.05  | 0.001 | 1      |
| TRANS-1,2-DICHLOROETHENE  | 3        | 5.8        | 0.10  | 0.1   | 50     |

A A C #2 H M E

# REMEDIATION LABORATORY QUALITY ASSURANCE MANUAL

# Prepared For:

CIBA SPECIALTY CHEMICALS CORPORATION
CIBA GEIGY SUPERFUND SITE
Toms River, New Jersey

# Prepared By:

CIBA SPECIALTY CHEMICALS CORPORATE REMEDIATION Toms River, NJ

and

ADVANCED GEOSERVICES CORP. Chadds Ford, PA

2003

David R. Ellis Laboratory Manager

# TABLE OF CONTENTS

| SI    | CTION | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.0   | ) Oti | TALITY ACCUPANCE TO THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PAGE NO.   |
| •••   | 1.1   | UALITY ASSURANCE POLICY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          |
|       | 1.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|       | 1.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|       |       | S SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          |
| 2.0   | OR    | RGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •          |
|       | 2.1   | RGANIZATIONORGANIZATION AND MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3          |
|       |       | THE PROPERTY OF THE PROPERTY O | 3          |
| 3.0   | ROI   | LABORATORY MANAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|       | 3.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|       | 3.2   | CHEMISTS AND TECHNICIANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5          |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 4.0   | TRA   | AININGON-GOING TRAINING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|       | 4.2   | ETHICS POLICY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9          |
| 5.0   | 7.45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 3.0   | LAB   | BORATORY FACILITY AND EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11         |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|       | 5.2   | EQUIPMENT INVENTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11         |
| 6.0   | DDE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 0.0   | IND   | VENTIVE MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12         |
| 7.0   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|       | 001/1 | APUTER HARDWARE AND SOFTWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 8.0   | LABO  | ORATORY SCOPE OF TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | war in the |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 9.0   | REFE  | ERENCE TO TEST PROCEDURES USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :          |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 10.0  | ARRA  | ANGEMENTS ENSURING LABORATORY REVIEW OF NEW V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *****      |
| 11.0  |       | DEMONSTRACT REVIEW OF NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WORK 17    |
| 11.0  | CONF  | FIDENTIALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40         |
| 12.0  |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18         |
| 12.0  | PROC  | CEDURE FOR ADDRESSING COMPLAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10         |
| 13.0  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 13.0  | SORC  | CONTRACTED ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20         |
| 14.0  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| - 1.0 | INOCE | EDURES FOR TRACEABILITY OF MEASUREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21         |
| 15.0  | DATA  | OLIATITY OF ITEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|       | ~UIV. | QUALITY OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22         |
| 16.0  | OLIVI | ITY CONTROL AGAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|       | Acuri | ITY CONTROL MEASURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24         |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |

|      | 16.1 METHOD BLANK                                       |            |
|------|---------------------------------------------------------|------------|
|      |                                                         |            |
|      |                                                         |            |
|      |                                                         |            |
|      | 16.5 SURROGATE SPIKES  16.6 PROFICIENCY TESTING         | 27         |
|      | 16.6 PROFICIENCY TESTING                                | 27         |
|      |                                                         |            |
| 17   | .0 STATISTICAL CONTROL LIMITS                           |            |
|      |                                                         |            |
| 18.  | .0 PROCUREMENT AND INVENTORY CONTROL                    |            |
|      |                                                         |            |
| 19.  |                                                         |            |
|      | 19.1 SAMPLE ACCEPTANCE POLICY                           | 32         |
|      | 19.2 SAMPLE PROCESSING PROCEDURE  19.2.1 Sample Control | 32         |
|      | 19.2.1 Sample Control                                   | 33         |
|      | 19.2.2 Proper Storage                                   | 33         |
|      | 19.2.3 Laboratory                                       | 34         |
|      | 19.2.3 Laboratory 19.2.4 Sample Control                 | 34         |
|      |                                                         |            |
| 20.0 | HOLDING TIMES AND PREPARATION OF SAMPLES                |            |
|      |                                                         |            |
| 21.0 | PROCEDURES FOR CALIBRATION AND VERIFICATION             |            |
|      | VEIGHTCATION                                            | 37         |
| 22.0 | DATA REDUCTION                                          |            |
|      |                                                         | 40         |
| 23.0 | DATA REVIEW                                             | , 45       |
|      |                                                         |            |
| 24.0 | DATA REPORTING                                          |            |
| 25.0 |                                                         |            |
| 25.0 | DOCUMENT CONTROL                                        | 4.0        |
| 25.0 |                                                         | 46         |
| 26.0 | RECORDS                                                 | 48         |
| 07.0 |                                                         | 4/         |
| 27.0 | PERFORMANCE ASSESSMENT                                  | 40         |
| 20.0 |                                                         | 48         |
| 28.0 | CORRECTIVE ACTION                                       | 40         |
| 20.0 |                                                         | 49         |
| 29.0 | CORRECTION OF ERRONEOUS REPORTS                         | · 60       |
| 20.0 |                                                         |            |
| 30.0 | DEPARTURES FROM POLICIES                                | <b>-</b> 1 |
| 21.0 |                                                         |            |
| 31.0 | AUDIT                                                   | <i>5</i> 0 |
| 22.0 | ATT LT VIII                                             | 54         |
| 32.0 | QUALITY SYSTEM REVIEW BY MANAGEMENT                     | <b>6</b> 0 |
| 22.0 |                                                         |            |
| 33.0 | TERMS AND DEFINITIONS                                   | e 4 .      |
|      |                                                         | 54         |

# TABLE OF TABLES

| TABLE |                              |          |
|-------|------------------------------|----------|
| 1     | Frequence                    | PAGE NO. |
| •     | Frequency and Control Limits | 30       |

# LIST OF ATTACHMENTS

# A Organization Charts and Resumes of Key Personnel B Analysis of Organic and Inorganic Compounds Using USEPA SW-846 Methodologies for Aqueous, Non-Aqueous, and Waste Samples (Recommended Container, Preservation, Storage and Holding Times) C Capitol Equipment D Analytical Methodologies E Forms

# 1.1 <u>INTRODUCTION</u>

This document describes the CIBA SPECIALTY CHEMICALS CORPORATION Quality Assurance policies and procedures related to chemical monitoring for environmental pollutants with respect to the Corporate Remediation Laboratory in Toms River, New Jersey.

## 1.2 PURPOSE

Although the Laboratory is not certified by a State or Federal Regulatory Agency, the Laboratory is dedicated to providing the Corporate Remediation Services Department with analytical data and services that conform to specified requirements, identical to those of a certified laboratory. This Quality Assurance Manual details the equipment and general procedures and practices utilized to maintain this objective, and presents an overview of the essential elements of the Toms River Corporate Remediation Laboratory Quality Assurance program. The Laboratory's commitment to product of the highest quality data is reflected by our investment in the best available analytical instruments. The Laboratory is capable of testing a full array of sample materials for a wide variety of organic and inorganic chemicals.

# 1.3 SCOPE

The Corporate Remediation Laboratory Quality Assurance Program is designed to control and monitor the quality of data generated in the Laboratory. The program has four key elements.

- Demonstrating Laboratory capability by providing information which documents the overall qualifications of the Laboratory to perform environmental analyses;
- Generate data is scientifically sound, meets project objectives, and is appropriate for its intended use.
- Controlling Laboratory operations by establishing procedures which measure the Laboratory's performance on a daily basis;

- Measuring matrix effects to determine the effect of a specific matrix on method performance; and
- Reporting appropriate QC information with the analytical results to enable the data user to assess the quality of the data.

The specific procedures involved in implementing each aspect of the Toms River Corporate Remediation Laboratory program are described in this document.

The QA policies and QC procedures described herein are designed to eliminate systematic errors and minimize the occurrence of other errors. However, no QA program, regardless of how elaborate, can eliminate all errors which may occur during an analysis. The QA program forms the framework for minimizing errors and identifying and correcting those errors which do occasionally occur. These QA policies and QC procedures must be coupled with the professional judgment of the technical staff interpreting the events surrounding the generation of the final result to ensure that quality data is consistently produced.

This QAM undergoes annual review by the Laboratory Manager. Revisions to the QAM are distributed throughout the laboratory to replace the outdated copies so that only the most current revision is in use. It is the responsibility of the Laboratory Manager to ensure that all Laboratory employees familiarize themselves with, and comply with, the procedures laid out in this manual and associated documentation. Every fifth year, a new QAM is written as required per USEPA "EPA Requirements for Quality Management Plans" (QA/R-2, March 2001).

The policies and practices of quality assurance/quality control presented in the following text are set forth as minimums.

2.0 <u>ORGANIZATION</u>

2.1

ORGANIZATION AND MANAGEMENT

Although the Toms River Corporate Remediation Laboratory has a small staff, a high degree of quality assurance is maintained due to the about the state of the st

quality assurance is maintained due to the ability and experience of each staff member. An organizational chart, resumes of key staff and experience and educational profiles for the entire

laboratory are presented in Attachment A.

Executing an effective QA program in a laboratory system demands the commitment and

attention of both management and staff. The QA effort at the Toms River Corporate

Remediation Laboratory is directed by its Laboratory Manager. The Laboratory Manager reports

directly to the Technical Director of Ciba Remediation Services and has the responsibility for

overseeing and regulating all Laboratory functions.

The implementation of the QA program in the Laboratory is the responsibility of the Laboratory

Manager. In addition, all scientists within the organization play a vital role in assuring the

quality of their work. The success of the Toms River Corporate Remediation Laboratory is

dependent upon the continued commitment of all members of the organization to a strong and

viable QA Program. The responsibilities and levels of authority within the organization are

structured to provide a strong QA Program. The responsibilities and levels of authority within

the organization are described below.

**CURRENT PERSONNEL FOR KEY POSITIONS** 

The Toms River Corporate Remediation Laboratory Quality Assurance Officer is:

Dr. David R. Ellis, Ph.D.

Laboratory Manager

Voice: (732) 914-2510

Fax: (732) 914-2909

Key Toms River Corporate Remediation Laboratory personnel directly responsible for overall sampling and analytical project coordination include:

Ms. Dorren K. McNichols, B.S. Remediation Chemist, QA / QC Voice: (732) 914-2512

Fax: (732) 914-2909

Key personnel directly responsible for analyses of the samples include:

Ms. Janet M Hlavac, B.S.
Remediation Chemist & Sample Custodian

Voice: (732) 914-2512 Fax: (732) 914-2909

Mr. Bill Mores
Air Monitoring Supervisor
Voice: (732) 914-2824

Fax: (732) 914-2909

All of the above personnel are located at:

Ciba Specialty Chemicals Corporation
Oak Ridge Parkway
PO Box 71
Toms River, NJ 08754

# 3.0 ROLES AND RESPONSIBILITIES

# 3.1 <u>LABORATORY MANAGER</u>

The QA effort within the Toms River Corporate Remediation Laboratory is directed by the Laboratory Manager who reports to the Technical Director of Ciba Remediation Services.

The Laboratory Manager is responsible for:

- Developing and implementing a QA program that ensures that all data generated in the Toms River Corporate Remediation Laboratory is scientifically sound, legally defensible, and of known precision and accuracy;
- Monitoring the QA Plan to ensure compliance with QA objectives in the Remediation Laboratory;
- Developing and implementing new QA procedures within the system to improve data quality;
- Conducting audits and inspections of the Toms River Corporate Remediation Laboratory on a regular basis, and applying corrective actions as needed to ensure compliance with the Toms River Corporate Remediation Laboratory QA Plan;
- Establishing databases that accurately reflect the performance of the Remediation Laboratory;
- Communicating QA issues with both clients and Laboratory staff;
- Promoting sound QA practices within the environmental regulatory and analytical communities;
- Actively supporting the implementation of the Toms River Corporate Remediation Laboratory Quality Assurance Plan within the Laboratory;

- Maintaining accurate SOPs and enforcing their use in the Laboratory; and
- Maintaining a work environment that emphasizes the importance of data quality.

The Manager of the laboratory has the authority to accept or reject data based on compliance with well-defined QC criteria. The Manager is the final authority on all issues dealing with data quality and has the authority to require that procedures be amended or discontinued, or analyses suspended or repeated. In addition, the manager can accept or reject data that falls outside of established QC guidelines if, in his judgment, there are technical reasons which warrant the acceptance or rejection of the data. These circumstances must be well documented, and any need for corrective action identified by the incident must be defined and initiated. The Laboratory Manager who directs the analytical work at the Toms River Corporate Remediation Laboratory is directly responsible for ensuring that all employees reporting to him are complying with the Corporate Remediation Laboratory Quality Assurance Plan. Also the Manager has the authority to recommend suspension or termination of employees on the grounds of dishonesty, incompetence or repeated non-compliance with QA procedures. The authority of the Laboratory Manager comes directly from the Technical Director of Ciba Remediation Services.

# 3.2 <u>CHEMISTS AND TECHNICIANS</u>

All Laboratory personnel involved in the generation and reporting of data have a responsibility to understand and follow specific analytical methodologies detailed in Standard Operating Procedures (SOPs) and the Toms River Corporate Remediation Laboratory Quality Assurance Plan.

Laboratory personnel are responsible for:

- Having a working knowledge of the Toms River Corporate Remediation Laboratory Quality Assurance Plan;
- Ensuring that all work is generated in compliance with the Toms River Corporate Remediation Laboratory Quality Assurance Plan:

- Performing all work according to written SOPs;
- Ensuring that all documentation related to their work is complete and accurate; and
- Providing management with immediate notification of quality problems.

Laboratory personnel have the authority to accept or reject data based on compliance with well-defined QC criteria. The acceptance or rejection of data that fall outside of established QC guidelines must be approved by Laboratory management. The authority of the Laboratory personnel flows from the Laboratory Manager.

The Sample Custodian is responsible for the receipt and handling of samples within the laboratory. Responsibilities include:

- Implementation of proper sample receipt procedures and sample preservation;
- Implements, completes and/or reviews external and internal chain-of-custody, as appropriate;
- Communicates and records anomalies associated with the condition of samples upon receipt of samples to the Laboratory Manager;
- Assigns a laboratory identification number to a sample and logs the sample into the Laboratory Information Management System (LIMS);
- Secures sample storage and preservation;
- Assists Health and Safety Officer with sample disposal; and
- Reviews storage monitoring records.

Reporting and Document Control is performed by all employees of the Laboratory. All employees are responsible for compiling analytical reports and achieving data results.

## DORREN K. McNICHOLS 1417 Broadway Boulevard Toms River, New Jersey 08757 (732) 244-8335

# PROFESSIONAL EXPERIENCE

Ciba Specialty Chemicals Corporation, Toms River, New Jersey

1997-Present

# Supervisor/Chemist GC/MS Laboratory

- Responsible for the analysis of routine and non-routine environmental samples using EPA, NJDEP, SW-846 and CLP protocols for GC/MS.
- Extract both volatile and semi-volatile soil samples prior to chromatographic analysis.
- Maintain, calibrate and solve problems with laboratory instrumentation.
- Develop GC methods for field air analysis using the Photovac Voyager Portable GC.
- Analyze air samples following TO-14, TO-15 and TO-17 protocols.
- Work with air sampling equipment for cleaning and preparing summa canisters.
- Introduce other techniques including Wet Chemistry into the laboratory.

CIBA-GEIGY Corporation, Toms River, New Jersey

# Laboratory Supervisor / Senior Chemist

- Supervised laboratory analysts using chromatographic separation techniques (IC,GC), inorganic techniques (FAA, ICP, Zeeman GFAA, CVHG) and classical wet chemistry methods.
- Responsible for training and cross training of personnel, scheduling of sample analysis, SOP development, troubleshooting instruments and reviewing data packages.
- Co-authored Quality Assurance Manual incorporating traceability of standards and GLP
- Responsible for maintenance of laboratory certification and technical review of analytical data.
- Assured safe working conditions in the laboratory through training and inspections.
- Departmental Hazardous Waste Coordinator.
- Purchased new laboratory instrumentation, which increased sample output by 45% and allowed the laboratory to accept additional work without increasing manpower.
- Responsible for sample preparation prior to chromatographic analysis.
- Introduced new sample preparation techniques into the laboratory resulting in the transfer of analysis from the slower GFAA to the ICP and transferred classical wet chemistry techniques to chromatography separation techniques.

#### Chemist B

- Analyzed environmental samples, using EPA, NJDEP, SW-846 and CLP protocols for IC, ICP, TOC, Zeeman GFAA, Flame AA and cold vapor mercury.
- Assured conformance to NJDEP requirements.
- Assisted in achieving laboratory certification.
- Maintained, calibrated, and solved problems with laboratory instrumentation.

# Analytical Chemist

- Supervised and developed analytical methods for wet chemistry, LC, GC and IC laboratories.
- Implemented Raw Material Testing Program, including interaction with Purchasing personnel for establishment of acceptable raw material specifications.
- Provided instructions and recommendations to plant personnel on proper equipment and sampling techniques resulting in a decrease in resamples.
- Created a database utilizing LOTUS 1-2-3 software for recording raw material analytical results and developed analytical methodology for testing.

# **Technical Assistant**

- Supervised 10 Laboratory Technicians who performed quality control testing on vat dyes and dye standardization.
- introduced new dye from plant development to production.
- Assisted plant personnel in troubleshooting production problems.
- Operated Applied Color System Spectrophotometer and assisted in debugging existing

# Laboratory Technician

- Performed qualitative and quantitative analysis of intermediates and finished products using a multitude of laboratory techniques including TLC, LC, GC and wet chemistry.
- Responsible for providing data on blending of ingredients for foremen and chemical operators.

# LABORATORY SKILLS

- ICP (Fisons & Leeman)
- Flame AA (Perkin-Elmer)
- GFAA (Perkin-Elmer & Hitachi)
- CVHG (Milton Roy)
- Colorimeter (Hach & Technicon)
- Sample Concetrators (Tekmar)

- IC (Dionex)
- TOC (Shimadzu)
- GC/MS (Hewlett Packard)
- LC (Waters & Dionex)
- Titrators (Brinkmann & Mettler)
- EPA / NJDEP / CLP Protocols

# COMPUTER SKILLS

- LIMS (Beckman & Perkin-Elmer)
- MS ChemStation
- WordPerfect 5.2
- Evolution

- Microsoft Office 2000
- Lotus 1-2-3 for Windows
- Plasma Vision
- GEM

#### EDUCATION

B. S., Chemistry, College of Mount Saint Vincent, Bronx, NY

#### TRAINING

- Perkin-Elmer Furnace & Flame AA (1990)
- Management Skills for Women Supervisors (1991)
- Supervisory Skills and Labor Relations (1992)
- Fundamentals of HPLC (1997)
- GC/MS Applications & Troubleshooting (1998)
- Quality Improvement Through Defect Prevention (1990)
- Hitachi Zeeman GFAA (1991)
- Fisons ICP (1994)
- Dionex IC (1993)
- Dionex ASE (1997)
- Perkin Elmer ATD 400 (2000)

## Janet M. Hlavac 1341 Silverton Road Toms River, NJ 08755 (732) 286-2028

Analytical Chemist with seven years experience in certified testing lab. Knowledgeable of sample preparation prior to analysis and familiar with EPA and NJDEP protocols required for sample analysis, as well as CLP. interpret data and report results passing protocol requirements. Create concise reports using Microsoft Excel / Word. Attentive to customer needs and efficient in meeting deadlines. Team oriented an organized with communication and computer skills.

# Professional Experience

Ciba Specialty Chemicals Corporation, Toms River, NJ

1998 - Present

## **Analytical Chemist**

- Developed LC Method to determine the degradation of surrogates by naturally occurring bacteria in soils under both aerobic and anaerobic conditions.
- Extracted samples for analysis from soils using Dionex Accelerated Solvent Extractor.
- Analyzed groundwater samples for chlorides, bromides and sulfates, and soil samples for chlorides, nitrates, phosphates and sulfates using lon Chromatography.
- Analyzed groundwater samples for metals using Hach Spectrophotometer.
- Set-up and maintained air sampling pumps equipped with carbon tubes and pumps with filters to collect particulates at five excavation sites for Biopilot Study.
- Monitored mixed soil piles in Building 110 for biodegradation using air pumps equipped with tedlar bags.
- Analyzed wetlands samples for Carbon, TKN, Ca, K, Mg, Na, P, pH, % solids etc. using various wet
- Used Perkin-Elmer "Voyager" Portable GC at various sites to determine baseline TVOC values before the excavation and TVOC values during and after the excavation.
- Maintain and calibrate analyzers monitoring the treated groundwater in the Wastewater Treatment Plant.
- Decon jars for compliance sampling, prepare paperwork and samples for Lancaster Labs.

Carter-Wallace, Inc., Cranbury, NJ

1997 -1998

# Laboratory Technician II

- Responsible for quality control analysis of ethical pharmaceuticals from production to approval, as well as stability testing prior to and after expiration date, using USP / NF methods.
- Insrumentation includes Distek Dissolution Equipment, Nicolet IR, Zymark Robotics, HP Gas Chromatography (Model 5890), and Waters Liquid Chromatography with both UV and RI detectors.

Ciba-Geigy Corporation, Toms River, NJ

# **Analytical Chemist**

- Responsible for analysis of samples using EPA, NJDEP, SW-846 and CLP protocols for IC, ICP, Zeeman Graphite Furnace, Flame AA and Cold Vapor Mercury.
- Actively trained and cross-trained personnel in laboratory techniques and instrumentation. Maintained instrumentation and solved problems by troubleshooting to avoid downtime. Exported raw data to an Excel spreadsheet to create a concise and orderly results report.

### **Associate Chemist**

Analyzed ground and drinking water samples, as well as solid samples, for a wide spectrum of inorgani parameters according to EPA and NJDEP protocols, utilizing IC, ICP, and Cold Vapor Mercury.

Interpreted and reported analytical data meeting QC acceptance parameters.

- Assisted in achievement and maintenance of laboratory certification.
- Sampled both on and off site monitoring wells in accordance with EPA and NJDEP protocols.
- Co-authored the Toms River site "Groundwater Sampling and Analysis Plan".

## **Technical Assistant**

- Worked in the New Technology Plant Support Group providing analytical support to process development utilizing HPLC instrumentation
- Co-authored SOP's for the analysis of dyestuffs during the production process.

# Shift Technician / Technical Assistant

- Worked in Azo Control Lab. analyzing on-line samples of azo dyes throughout the production process.
- Supervised ten azo control laboratory technicians, providing work schedules and analytical instructions. Responsible for maintaining instrumentation and ordering supplies to keep laboratory running efficiently.

Positions Prior to 1982

Merck And Co., Inc., Rahway, NJ

Staff Microbiologist, Department of Parasitology

- Involved in life cycle studies of the coccidia, Eimeria tenella, using chick embryo kidney cells in tissue
- Responsibilities included aseptic removal of kidneys from chick embryos and subsequent cell preparation for growth in tissue culture.
- Techniques included trypsinization, counting, inoculation into growth media, plating, feeding and maintenance in a CO2 incubator.
- Successfully produced film on the life cycle of Eimeria Tenella utilizing time-lapse microcinematography.

# Microbiologist, Department of Microbiology

- Used the embryonated chick egg as an assay tool in studies with PPLO and Avian Leucosis.
- Developed successful, reliable in ova test where infection and test drug were inoculated into the yolk.
- Required skills such as candling, membrane dropping, window drilling in shell, implantation of infected tissue on the membrane and inoculation of chemotherapeutic agents into the embryonic sac /

# Junior Microbiologist, Department of Microbiology

- Involved in research on new antibiotics.
- Achieved proficiency in media preparation, sterilization, aseptic technique, serial dilution, solubility, inoculation, plating and pH observation.
- Performed shake flask fermentation studies with regard to growth medium, temperature and pH for
  - Experimented with embryonated chick eggs and the absorption of antibiotics through the shell.

#### Janet M. Hlavac

## Education

B. S., Biology, Chestnut Hill College, Philadelphia, PA

#### **Training**

Fisons ICP: Theory, Software, Maintenance and Troubleshooting, 1993
Dionex IC: Maintenance and Troubleshootong, 1990
HPLC: Fundamentals of HPLC, 1997

#### **Awards**

Environmental Employee of the Quarter for teamwork in the development of the Toms River Monitoring Sampling and Field Measurement Protocol, 1989.

Toms River Site Employee of the Second Quarter for saving 100% of glass test tube washing time per wee by using plastic tubes as liners in the glass test tubes of the ICP autosampler, 1993.

# 4.0 <u>TRAINING</u>

It is the policy of the Laboratory to employ permanent staff who are appropriately qualified and/or trained to perform their respective duties. Where, for project reasons, it is necessary to employ temporary staff, the laboratory ensures that the same criteria as those governing permanent staff apply with respect to training and qualifications.

Personnel training procedures begin with an orientation program designed to familiarize the new associate with safety and chemical hygiene issues, the importance of quality assurance/quality control in the analytical laboratory, and company policies and benefits.

The level of training necessary to perform analytical tasks is determined from employee's academic background and past experience, technical courses, and on-the-job training with specific methods or instrumentation. The responsibility of formal academic training lies foremost with the individual. The responsibility for the additional specialized skills obtained through in-house training or external workshops is a shared obligation of the individual, his/her supervisor, and the laboratory. An individual's academic and professional experience is kept on file including an initial statement of qualifications or resume and any additional documentation concerning subsequent training.

In order to ensure that the policies and objectives of this QAM are communicated to all new personnel, all associates are required to read this QAM during the training process. This training is documented on the *Record of Individual Training* (Attachment E) and included in the training files of each associate.

Trainees are under the supervision of experienced analysts who are responsible for showing them the analytical procedures including applicable QA/QC measures. A new analyst is not permitted to perform an analysis until his/her supervisor is confident that the analytical and QA/QC procedures can be carried out correctly and method proficiency is documented.

Technical training is accomplished within the laboratory to ensure method (SOP) comprehension. All new personnel are required to demonstrate competency in performing a particular method by successfully completing a Demonstration of Capability (DOC) before conducting analysis independently.

DOCs are performed by analysis of four replicate QC samples. Results of successive LCS analyses can be used to fulfill the DOC requirement. The accuracy and precision, measured as average recovery and standard deviation (using n-1 as the population), of the 4 replicate results are calculated and compared to those in the test method (where available). If the test method does not include accuracy and precision requirements, the results are compared to target criteria set by the laboratory. The laboratory sets the target criteria such that they reflect the DQOs of the specific method or project. A DOC Certification Statement is recorded and maintained in the employee's training or personnel file. An example of a DOC Certification Statement can be found in **Attachment E**.

The Toms River Corporate Remediation Laboratory is equipped with many structural safety features. Each associate is familiar with the location, use, and capabilities of general and specialized safety features associated with their workplace. To protect associates from potential workplace hazards, the Toms River Corporate Remediation Laboratory provides and requires the use of certain items of protective equipment. These include safety glasses, protective clothing, gloves, respirators, etc. For a complete description of the types of personal safety equipment available and applicable to a particular workspace, refer to the laboratory Chemical Hygiene Plan manual.

#### 4.1 <u>ON-GOING TRAINING</u>

The Toms River Corporate Remediation Laboratory has a firm commitment to make sure that all analysts remain proficient in the tests that they perform. SOPs are reviewed annually and analysts are required to read the latest version of the SOP. Performance evaluations are analyzed by the laboratory.

### 4.2 <u>ETHICS POLICY</u>

Establishing and maintaining a high ethical standard is an important element of a Quality System. In order to ensure that all personnel understand the importance the Corporation places on maintaining high ethical standards at all times, the Ciba Specialty Chemicals Corporation requires that each employee understands the Corporate "Code of Conduct" policy and receives formal training.

# 5.0 <u>LABORATORY FACILITY AND EQUIPMENT</u>

The Toms River Corporate Remediation Laboratory is active in environmental analysis and offers a full range of analytical services to the Corporate Remediation Services Department. The laboratory is compliant with current Occupational Safety and Health Administration (OSHA) regulations and is equipped with environmental controls including air conditioning and building security systems. In addition, the laboratory is outfitted with instrumentation exhibiting advanced technology and automation.

The laboratory facility has high purity water system.

#### 5.1 SECURITY

Because of the nature of the Toms River Corporate Remediation Laboratory's work, adequate security of the facilities, equipment and project files is necessary. Visitors register upon entering the Site and are accompanied by an associate while visiting. The Laboratory Manager ensures that personnel are familiar with the Toms River Corporate Remediation Laboratory's security policies.

The laboratory facilities are secured with an alarm system.

# 5.2 <u>EQUIPMENT INVENTORY</u>

A comprehensive list of major instrumentation available, along with supporting and miscellaneous equipment can also be found in Attachment C.

## 6.0 PREVENTIVE MAINTENANCE

To minimize system down time and corrective maintenance costs, and to ensure data validity, the Remediation Laboratory utilizes a system of preventive maintenance. General preventive maintenance procedures, many of which are unique to particular instruments, are outlined in each instrument's operation manual. All routine maintenance is performed as recommended by the manufacturer. The manuals also assist in the identification of commonly needed replacement parts, so that an inventory of these parts can be maintained at the laboratory. It is the Chemists/Technicians' responsibility to make sure that the most current version of the operator manual is available in the laboratory. Routine maintenance is performed by the analyst while external technicians may be called in for major repairs.

A bound maintenance and repair log notebook is kept with each instrument to record all routine and non-routine maintenance. Notation of the date and maintenance activity is recorded every time service procedures are performed. This includes routine service checks by laboratory personnel as well as factory service calls. The return to analytical control following instrument repair is also noted in laboratory maintenance logbooks.

# 7.0 <u>COMPUTER HARDWARE AND SOFTWARE</u>

Whenever possible, the laboratory establishes standards for computer systems and peripheral equipment. In instances where a vendor-provided solution is bundled with hardware and software, the vendor certifies that the proposed hardware readily operates with existing hardware platforms, and will provide operating and maintenance instructions. Computer system hardware is configured by Toms River Corporate Remediation Laboratory associates or vendor technicians. Major hardware items include systems used for data collection and dedicated and networked printers. Major software includes HP MS Chemstation.

# 8.0 <u>LABORATORY SCOPE OF TESTS</u>

The laboratory can be requested to perform a wide variety of inorganic and organic analyses on various matrices including air, water, soil, and sludge. Analyses follow acceptable regulatory protocols. Detailed descriptions of accepted procedures and reporting limits are maintained in the individual method SOPs. Attachment D of this QAM presents a summary of the methods employed by the Toms River Corporate Remediation Laboratory.

## 9.0 REFERENCE TO TEST PROCEDURES USED

The following list includes the sources for the majority of analytical methods referenced by the laboratory:

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, USEPA, January 1996.

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, 40 CFR Part 136, USEPA Office of Water.

Methods for Chemical Analysis of Water and Wastes, EPA 600 (4-79-040), 1983.

Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88-039, December 1988, Revised July 1991, Supplement I, EPA-600-4-90-020, July 1990, Supplement II, EPA-600/R-92-129, August 1992.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA 600 (R-93-100), August 1993.

Statement of Work for Inorganic Analysis, ILM04.0, USEPA Contract Laboratory Program, Multi-media, Multi-concentration.

Statement of Work for Organics Analysis, OLM03.2, OLM04.2, USEPA Contract Laboratory Program, Multi-media, Multi-concentration.

Standard Method for the Examination of Water and Wastewater, 19<sup>th</sup> Edition; Easton, A.D. Clesceri, L.S. Greenberg, AE. Eds; American Water Works Association, Water Pollution Control Federation, American Public Health Association: Washington, D.C., 1995.

Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, September 1986; Final Update I, July 1992; Final Update IIA, August 1993; Final Update II, September 1994; Final Update IIB, January 1995; Final Update III, December 1996.

Annual Book of ASTM Standards, American Society for Testing & Materials (ASTM), Philadelphia, PA.

USEPA Low Concentration Organic Analysis. USEPA, OLC2.1.

<u>Procedures for Handling and Chemical Analysis of Sediment and Water Samples</u>, Plumb, Russell, USEPA Corps of Engineers, May 1991.

# 10.0 ARRANGEMENTS ENSURING LABORATORY REVIEW OF NEW WORK

The Laboratory Manager considers available resources before accepting new work. The same consideration must be evaluated prior to the laboratory expanding its scope of testing. Feasibility of method development and method proficiency demonstration must be established. If the Laboratory determines it has the ability and desire to perform the work, a plan for implementation is prepared. This would include but not be limited to: acquiring necessary equipment, reagents and/or standards, training analysts, writing appropriate SOPs, and performing MDL and P&A studies.

### 11.0 <u>CONFIDENTIALITY</u>

It is the Remediation Laboratory's policy not to release any information pertaining to projects and reports, except to the person who submitted the samples.

## 12.0 PROCEDURE FOR ADDRESSING COMPLAINTS

This procedure provides guidance for investigation of technical complaints. That is, a complaint concerning the validity of the laboratories' test result or test methods or the interpretation of a technical specification. Complaints may originate verbally or in written form. All complaints are documented and investigated by the Laboratory Manager. The Laboratory Manager is responsible for working together with the Chemist/Technician to investigate and resolve the complaint, dependent on the complexity and severity of the complaint. In cases where the complaint relates to data quality or the quality system, the QA Manager may conduct an internal audit. Depending on the type of complaint, the time frame is decided. Generally, if the complaint is related to the specific project data, it is resolved immediately and the revised data is submitted.

## 13.0 <u>SUBCONTRACTED ANALYSES</u>

There are occasions when particular laboratory analyses cannot be completed in-house by the Toms River Corporate Remediation Laboratory. This may occur because the laboratory does not have the necessary instrumentation, equipment or certification to perform the analyses. The laboratory also subcontracts overflow work as necessary when instrument problems occur or physical capacity is exceeded. Prospective subcontracting firms are thoroughly reviewed with an emphasis on their quality control program and associated certifications. The Laboratory Manager will ensure that the laboratory receiving the subcontracted work maintains the necessary certifications and level of quality to perform the work to project specifications. When samples are sent, they are shipped to the subcontracting firm from the laboratory, and the results of the analyses are transmitted back to the laboratory for review.

# 14.0 PROCEDURES FOR TRACEABILITY OF MEASUREMENTS

An external certified service engineer services balances on an annual basis. This service is documented on each balance with a signed and dated calibration stamp. Balance calibrations are verified on a monthly basis using Class S weights. Analytical balances are checked at multiple weights and the measured weight is recorded in a bound monitoring logbook. Any discrepancies are brought to the immediate attention of the Laboratory Manager.

All mercury thermometers and temperature probes are calibrated annually against traceable reference thermometers. On a daily basis the temperature readings of the ovens, refrigerators, and other temperature-controlled equipment are recorded on log sheets. Any corrective action that is required is performed by the Chemist.

The conductivity of the laboratory-deionized water is checked daily with an in-line meter. The accuracy of the meter is checked monthly with a conductivity probe in accordance with EPA method 120.1. This information is recorded on log sheets, which are maintained by a laboratory Chemist.

Traceability of measurements is assured through the use of a system of documentation and analysis of testing materials. All standards used in the calibration of instrumentation are certified by the supplier as to their accuracy. These certificates of analysis are maintained by the laboratory. The preparation of all standards is recorded in department Standard Preparation Logbooks. Information to facilitate traceability is included in this documentation. All standard and reagent labels must contain the following information: solution ID, concentration, date of preparation, initials of preparer, expiration date.

## 15.0 <u>DATA QUALITY OBJECTIVES</u>

The effectiveness of a QA program is measured by the quality of data generated by the laboratory. Data quality is judged in terms of its precision, accuracy, representativeness, completeness and comparability. These terms are described as follows:

Precision is the degree to which the measurement is reproducible. Precision can be assessed by measurements of duplicate preparations of a sample or matrix spike/matrix spike duplicate set (MS/MSD). Precision is determined by comparison of these duplicates. The difference between two analytical measurements of the "same" sample prepared in duplicate leads to some indication of the precision or reproducibility of the analysis mechanism. It is the analysis scheme that should be the greatest cause of departure from obtaining identical values. Statistical evaluation of a series of differences allows an assignment of precision to the analysis for a given sample matrix. One indicator of precision is relative percent difference (RPD). The Toms River Corporate Remediation Laboratory determines control status of an analysis with regard to precision by employing the statistical analysis of historical duplicate data for a given analysis to generate control limits for the evaluation of future data generated by that analysis. Typically, a control limit for a specific analysis is RPD equal zero (identical duplicate results) to three standard deviations of an array of twenty recent RPD values. This may be tracked in a tabular or graphic manner.

Accuracy is a determination of how close the measurement is to the true value. Accuracy can be assessed using standard reference materials or spiked environmental samples. The determination of the accuracy of a measurement requires a knowledge of the true or calculated value for the control sample or of the amount of analyte being added to the sample. Accuracy may be calculated in terms of percent recovery, which is the amount of analyte exhibited in the routine analysis of the control sample minus any analyte originally present, divided by the amount added, expressed as a percent. The Toms River Corporate Remediation Laboratory determines control status of an analysis with regard to accuracy by employing the statistical analysis of historical recovery data for a given analysis to generate control limits for the evaluation of future

data generated by that analysis. Typically, a control limit for a specific analysis is plus/minus three standard deviation units about the average recovery of an array of twenty recent recovery pairs. This may be tracked in a tabular or graphic manner.

Representativeness is the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Analytical data should represent the sample analyzed regardless of the heterogeneity of the original sample matrix. The Toms River Corporate Remediation Laboratory strives to accommodate all sample matrices. Some samples may require analysis of multiple phases to obtain representative results. It is the responsibility of those performing the sampling to assure that the sample collected is representative of field conditions.

Completeness is a measure of the amount of valid data obtained from a measurement system compared with the amount that was expected to be obtained under normal conditions. To be considered complete, the data set must conform to all quality control criteria which verify precision and accuracy for the analytical protocol. Immediate corrective action will be taken when it is known that resampling will be required or if repreparation or reanalysis of a sample will be required. Attempts will be made to perform the reanalysis within holding time so that the data may be considered complete.

<u>Comparability</u> expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured through the use of established and approved analytical methods, consistency in the basis of analysis (wet weight, volume, etc.), consistency in reporting units (ppm, ppb, etc.) and analysis of standard reference materials.

<u>Traceability</u> is the extent to which reported analytical results can be substantiated by supporting documentation. Traceability documentation exists in two essential forms: those which link the quantitation process to authoritative standards, and those which explicitly describe the history of each sample from collection to analysis and disposal. The traceability goal for the laboratory is 100%.

## 16.0 QUALITY CONTROL MEASURES

Laboratory QC evaluation is provided as an integral part of every analysis. The main elements of analytical quality assurance at the Toms River Corporate Remediation Laboratory include but are not limited to the following:

- The generation of a multi-point calibration curve or the analysis of a daily or more frequently analyzed mid-range standard that verifies the initial multi-point curve;
- The analysis of blanks:
- The analysis of matrix spike and matrix spike duplicates at a prescribed frequency;
- The analysis of laboratory control samples at prescribed frequencies;
- The analysis of surrogate compounds (organic analyses); and
- The analysis of proficiency samples.

The aforementioned elements are discussed below. Please refer to Section 21 of this QA Plan for a discussion of calibration procedures.

## 16.1 <u>METHOD BLANK</u>

Method blanks, also known as reagent, analytical or preparation blanks, are analyzed to assess the level of background interference or contamination which exists in the analytical system and which might lead to the reporting of elevated concentration levels or false positive data.

As part of the standard Toms River Corporate Remediation Laboratory program, a method blank is analyzed with every batch of samples processed. A method blank consists of reagents specific to the method which are carried through every aspect of the procedure, including preparation, cleanup and analysis. The results of the method blank analysis are evaluated, in conjunction

with other QC information, to determine the acceptability of the data generated for that batch of samples.

Ideally, the concentration of target analytes in the blank should be below the Reporting Limit for that analyte. In practice, however, some common laboratory solvents and metals are difficult to eliminate to the parts-per-billion levels commonly reported in environmental analyses. Therefore, criteria for determining blank acceptability must be based on consideration of the analytical techniques used, analytes reported and Reporting Limits employed.

For organic analyses, the concentration of target analytes in the blank must be below the Reporting Limit for that analyte in order for the blank to be considered acceptable. An exception is made for common laboratory contaminants (methylene chloride, acetone, 2-butanone, toluene, and bis 2-ethylhexylphthalate) which may be present in the blank at up to 5 times the reporting limit and still be considered acceptable. This policy is consistent with the CLP policy and has been established in recognition of the fact that these compounds are frequently found at low levels in method blanks due to the materials used in the collection, preparation and analysis of samples for organic parameters.

For metals analysis, the policy is that the concentration of the target analytes in the blank must be below two times the reporting limit. If the blank value for a target analyte lies below the reporting limit, the reporting limit for that analyte in the associated samples is unaffected. A blank containing an analyte(s) above two times the reporting limit is considered unacceptable unless the lowest concentration of the analytes in the associated samples is at least ten times the blank concentration (CLP protocol).

For conventional inorganic tests, the method SOP directs how the blank is treated. Generally, a reagent blank is used both to zero the equipment and as one of the calibration standards. If a preparation step is required for the analysis, then a preparation blank is also analyzed to determine the extent of contamination or background interference. In most cases, the concentration found in the preparation blank is subtracted from the concentration found in any

associated sample prior to calculating the final result. Blanks have no application or significance for some conventional inorganic parameters (e.g., pH).

If the blank does not meet acceptance criteria, the source of contamination must be investigated and appropriate corrective action must be taken and documented. Investigation includes an evaluation of the data to determine the extent and effect of the contamination on the sample results. Corrective actions may include reanalysis of the blank and/or repreparation and reanalysis of the blank and all associated samples.

For organic and metal analyses and selected conventional inorganic tests, method blank results are reported with each set of sample results. Sample results are not corrected for blank contamination. Occasionally, due to limited sample volume or other constraints, the laboratory reports data associated with an unacceptable blank.

#### 16.2 <u>FIELD BLANKS</u>

Field blanks are check samples that monitor contamination originating from the collection, transport, or storage of environmental samples. One example of a field blank is an equipment blank. An equipment blank is reagent water that is poured through the sample collection device following decontamination procedures to check the adequacy of the cleaning procedures for the sampling equipment. Another type of field blank is a trip blank. A trip blank is a laboratory control matrix (typically water) which is sent to the field in an appropriate sample container, remains unopened in the field and then is sent back to the laboratory. The purpose of the field blank is to assess the impact of field and shipping conditions on the samples. The results from field blanks are reported to the client as a sample in the same concentration units as the samples themselves. No correction of the analytical data is done in the laboratory based on the analysis of field blanks.

# 16.3 MATRIX SPIKE / MATRIX SPIKE DUPLICATE (MS / MSD)

A Matrix Spike (MS) and a Matrix Spike Duplicate (MSD) are QC check samples that are derived from the division of a concurrently analyzed environmental sample into two additional

and separate aliquots. Each aliquot is spiked with known concentrations of analytes representative of the method. The two spiked aliquots are processed separately and the results compared to determine the effects of the matrix on the precision and accuracy of the analysis. Results are expressed as percent recovery and relative percent difference (RPD). In accordance with the above criteria, five (5) percent of all samples are spiked in duplicate with the parameter being analyzed and the most recent twenty (20) results of these spiked samples are used to generate control charts for both percent recovery and relative percent difference between analyses of duplicate samples. Control limits for accuracy for each analyte are based on the historical average recovery of the spike pairs under consideration plus or minus three standard deviation units. Control limits for precision for each analyte are established at zero (no difference between duplicate results) to three standard deviation units of the mean RPD.

# 16.4 <u>LABORATORY CONTROL SAMPLES (LCS)</u>

Laboratory control samples (LCS) are well characterized, laboratory generated samples used to monitor the laboratory's day-to-day performance of routine analytical methods. Laboratory control samples are reagent water that has been spiked with all method analytes or a group of analytes representative of the analysis. Because of the similarity of the LCS to a calibration standard, the source of the spiking material should be different than that of the calibration standards. Recoveries must meet acceptance criteria stated in the method SOP. Laboratory control samples are used to monitor the accuracy of the analytical process, independent of matrix effects. They are also used in conjunction with blanks to identify any background interference or contamination of the analytical system which may lead to the reporting of elevated concentration levels or false positive data. The fact that they are made from source materials different from calibration standards makes the LCS a good check for deteriorating or mislabeled standards.

### 16.5 <u>SURROGATE SPIKES</u>

Surrogates are organic compounds which are similar to the analytes of interest in chemical behavior, but which are not normally found in environmental samples. Surrogates are added to samples to monitor the effect of the matrix on the accuracy of the analysis. Results are reported in terms of percent recovery. The Toms River Corporate Remediation Laboratory routinely adds

surrogates to samples requiring GC / MS or GC analysis. The laboratory does not control its operations based on surrogate recoveries in environmental samples unless method specifically state the requirement. The surrogate recoveries are primarily used by the laboratory to assess matrix effects. However, obvious problems with sample preparation and analysis (e.g., evaporation to dryness, leaking septum, etc.) which can lead to poor surrogate spike recoveries must be ruled out prior to attributing low surrogate recoveries to matrix effects thereby requiring re-extraction / re-analysis.

Table 1 provides a brief summary of the frequency and control limits for the fundamental quality control measures performed for analyses by the laboratory. Additional types of quality control are performed as necessary.

#### 16.6 <u>PROFICIENCY TESTING</u>

The Remediation Laboratory participates in a proficiency testing program to assure the quality of test results. The laboratory participates in the program as appropriate for a particular project or regulatory program.

Proficiency samples are handled and tested in the same manner (SOP, equipment, trained personnel) as normal environmental samples. Proficiency test sample data is archived with project records.

<u>Table 1</u>
Frequency and Control Limits

| Parameter                 | QC Type                   | Frequency                         | Control Limits                                                              | Corrective Action                                                                   |
|---------------------------|---------------------------|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Volatile Organics         | method blank              | l per batch                       | target analytes below<br>RL, 10x exception for<br>lab solvents              | system check, reanalysi<br>of associated samples                                    |
|                           | surrogate spike           | each sample, standard<br>blank    | limits listed in method                                                     | review, reanalyze based<br>on technical judgment                                    |
|                           | MS/MSD                    | set per 20 samples per<br>matrix  | limits listed in method                                                     | • •                                                                                 |
|                           | LCS (Blank Spike)         | 1 per batch                       | limits listed in method                                                     | review, reanalyze LCS<br>(Blank Spike) and<br>associated samples, if<br>appropriate |
| Semi-Volatile<br>Organics | method blank              | 1 per 20 samples or each batch    | target analytes below<br>RL, 5x exception for<br>common lab<br>contaminates | reanalysis, if still out,<br>reextract w/ samples                                   |
|                           | surrogate spike           | each sample, standard,<br>blank   | limits listed in method                                                     | review, reextract, based<br>on technical judgment                                   |
|                           | MS/MSD                    | set per 20 samples per<br>matrix  | limits listed in method                                                     | report results                                                                      |
|                           | LCS (Blank Spike)         | 1 per 20 samples or each batch    | limits listed in method                                                     | review, reextract w/<br>samples, if appropriate                                     |
| Extractable Organics      | method blank              | 1 per 20 samples or each batch    | all compounds below RL                                                      | reanalysis, if still out,<br>reextract w/ samples                                   |
|                           | surrogate spike           | each sample, standard,<br>blank   | limits listed in method                                                     | review, reextract, based<br>on technical judgment                                   |
|                           | MS/MSD                    | set per 20 samples per<br>matrix  | limits listed in method                                                     | report results                                                                      |
|                           | LCS (Blank Spike)         | 1 per 20 samples or<br>each batch | limits listed in method                                                     | review, reanalysis or<br>reextract w/ samples, if<br>appropriate                    |
| Metals                    | lab reagent/prep<br>blank | 1 per 20 samples or<br>batch      | analyte below RL                                                            | redigest batch                                                                      |
|                           | LCS (Blank Spike)         | l per batch                       | Soils: limits provide by vendor; Waters: ±20%                               | redigest batch                                                                      |
|                           | replicates                | 1 per 20 samples per<br>matrix    | ±20%                                                                        | flag results                                                                        |
|                           | matrix spikes             | 1 per 20 samples per<br>matrix    | 75-125%                                                                     | flag results                                                                        |
| Wet Chemistry             | lab reagent/prep<br>blank | 1 per 20 samples or<br>batch      | analyte RL                                                                  | system check, reanalysis of batch                                                   |
|                           | LCS (Blank Spike)         | l per batch                       | 80-120% recovery                                                            | system check, reanalysis of batch                                                   |
|                           | replicates                | 1 per 20 samples per<br>matrix    | ±20%                                                                        | flag results                                                                        |
|                           | matrix spikes             | 1 per 20 samples per<br>matrix    | 75-125%                                                                     | flag results                                                                        |

RL

Reporting

Limit

### 17.0 <u>STATISTICAL CONTROL LIMITS</u>

The laboratory utilizes specific minimum acceptance limits established by the method or acceptance limits are generated by the analysis of quality control samples (20 data points). This allows any out-of-control parameters to be detected before data is reported. If the out-of-control parameter is judged to be sample related, the analysis may continue. The corrective action policy must be followed, and the result reported with a comment qualifying the results.

When an analysis is deemed out-of-control by the analyst performing the analysis, the reason for the out-of-control situation is investigated immediately. The response to the out-of-control situation will depend on the analysis and the SOP should be consulted. In addition, the Laboratory Manager is informed of the problem and does not allow any further analyses until the problem has been corrected. Corrections may include reassay of the check samples, recalibration, instrument maintenance or other SOP mandated operations. If it is necessary to report results obtained when the system is judged to be out-of-control, the corrective action policy will be followed, the data will be flagged on the laboratory analysis report, and a qualifying comment will be attached.

### 18.0 PROCUREMENT AND INVENTORY CONTROL

Chemical reagents, solvents, gases, glassware and general supplies are ordered as needed to maintain sufficient quantities on hand. Criteria for all equipment and reagents effecting data quality are well defined in the SOPs. Any item critical to the analysis, such as an instrument or reagent, received and accepted by the laboratory is documented. This includes type, age, and acceptance status of the item. Reagents are dated upon receipt and upon opening to establish their order of use and to minimize the possibility of exceeding their shelf life.

# 19.0 PROCEDURES FOR HANDLING TEST ITEMS - SAMPLE CUSTODY

Sample representativeness and integrity are the foundations upon which meaningful analytical results rely. A documented and approved sampling plan reflecting data quality objectives should be in place at the sampling site. The integrity of the sample should be maintained through the use of preservation techniques specified in the relevant protocols. Samples are submitted to the laboratory under standard chain-of-custody procedures. A copy of the laboratory Chain of Custody form can be found in Attachment E.

## 19.1 <u>SAMPLE ACCEPTANCE POLICY</u>

Upon receipt, samples proceed through an orderly processing sequence specifically designed to ensure continuous integrity of both the sample and its documentation. Samples are considered "compromised" if the following conditions are observed upon sample receipt:

- Color and/or samples are received outside of temperature specification.
- Samples are received broken or leaking.
- Samples are received beyond or close to the holding time.
- Samples are received without appropriate preservative.
- Samples are received in inappropriate containers.
- COC does not match samples received.
- COC is not properly completed or not received.
- Breakage of any Custody Seal.
- Apparent tampering with cooler and/or samples.
- Headspace in volatiles samples.
- Seepage of extraneous water or materials into samples.
- Inadequate sample volume.
- Illegible, impermanent, or non-unique sample labeling.

All samples are received by the Toms River Corporate Remediation Laboratory personnel and are carefully checked for label identification and matched to accompanying chain-of-custody records. Additionally, sample temperature and pH information are obtained and recorded, as are any unusual sample conditions such as breakage. Each sample is then assigned a unique laboratory identification number through a computerized Laboratory Information Management System (LIMS) that stores all identifications and essential information. The LIMS system tracks the sample from storage through the laboratory system until the analytical process is completed and the sample is disposed of. Internal chain-of-custody is maintained. Access to the Remediation Lab, LIMS and to the sample storage areas is restricted to preclude unauthorized contact with samples, extracts or documentation. The samples are stored in a limited access refrigerator maintained at one to four degrees centigrade. At an appropriate time, samples are lab-packed and disposed of as hazardous waste through the Toms River site waste-handling program.

An example of the Toms River Corporate Remediation Laboratory Chain-of-Custody Record used to transmit samples from the client to the laboratory is given in Attachment E. Sample bottles provided to the client by the laboratory are precleaned and batch analyzed and are transmitted under custody. Overall responsibility of the sample custody function is held by the Laboratory Manager.

# 19.2 <u>SAMPLE PROCESSING PROCEDURE</u>

### 19.2.1 <u>SAMPLE CONTROL</u>

- Check and document physical condition of sample.
- Verify documentation and analysis assignment.
- Log into LIMS.
- Send acknowledgement letter to client. (where applicable)

#### 19.2.2 <u>Proper Storage</u>

- Store sample according to preservation guidelines.
- Transfer sample to lab with proper documentation.

### 19.2.3 <u>Laboratory</u>

- Document analytical work.
- Return used samples to Sample Control.

### 19.2.4 <u>Sample Control</u>

 Return sample to client or arrange for sample disposal in compliance with state and federal guidelines.

## 20.0 HOLDING TIMES AND PREPARATION OF SAMPLES

The holding time for every analysis is established in Federal or State regulations and is documented in the method SOP or on a project specific basis. Holding times are normally tracked by the Chemist/Technician using the LIMS. Attachment B provides detailed information on sample containers, sample preservatives, etc. Alternatively, the analytical method utilized will provide guidance for sample containers, sample preservation and hold times.

Work is scheduled by the Laboratory Manager and Section Supervisors to avoid expiration of any sample prior to analysis. If any holding times are not met, the laboratory informs the Laboratory Manager as soon as possible and the Laboratory Manager notifies the client.

Samples are prepared according to standardized methods. Batches are generated according to preparation method, analytical method, and matrix. In general, batches do not exceed 20 field samples of the same matrix and are defined as samples prepared at the same time.

<u>Inorganics (Metals and Wet Chemistry)</u> – Samples for analyses are prepared in batches containing a maximum of 20 samples of the same or similar matrix. A laboratory blank and laboratory control sample are digested with each batch. Matrix spikes (MS and MSD) and replicate analyses are performed for every 20 samples of the same matrix.

<u>Organics</u> - Samples for organics analyses are prepared in batches containing a maximum of 20 samples of the same or similar matrix. The organic extraction labs are equipped for handling many matrices and various clean-up requirements including Florisil, GPC, silica gel, acid-base, copper and sulfur. A method blank is performed with each batch. Lab control samples are extracted with each batch for applicable methods. Matrix spike and matrix spike duplicate analyses are performed for every 20 samples of the same matrix.

<u>Re-preparation</u> - Re-preparation or re-analysis of a sample may be required in cases of contamination, missed dilution, low surrogate recover, etc. Typically, if this reanalysis is

conducted outside of the holding time, the laboratory will be considered to have fulfilled its obligation to meet holding times if the preparation and/or analysis was initiated within the prescribed holding time. Additionally, a Corrective Action Report (Attachment E) is filed with the Laboratory Manager when the laboratory has initiated a re-preparation request.

# 21.0 PROCEDURES FOR CALIBRATION AND VERIFICATION

Calibration of instrumentation is required to ensure that the analytical system is operating correctly and functioning at the proper sensitivity to meet established reporting limits. Each instrument is calibrated with standard solutions appropriate to the type of instrument and the linear range established for the analytical method.

Method specific SOPs discuss in detail how each instrument is calibrated, including frequency for calibration and re-calibration, and the source or grade of the calibration materials. The range of analyses performed and instrumentation utilized is extensive and the calibration procedures are instrument specific, varying from analysis to analysis. The calibration procedures for organics usually include an initial system performance check and some type of initial calibration (with a minimum of five calibration standards for most methods) with each analytical series. On-going and closing calibration checks are also included in most analytical series. For each type of calibration standard or performance check, there are specific criteria to meet before sample analyses begin. These criteria are established in the methodologies as they are written in the referenced texts or by contract specifications.

Gas Chromatography/Mass Spectrometry (GC/MS) – prior to analysis of samples, the instrument is tuned with bromofluorobenzene (BFB) for volatile compounds and decafluorotriphenyl-phosphine (DFTPP) for semi-volatile compounds or other tune criteria as specified by the method used. No samples are analyzed until the instrument has met the tuning criteria of the method.

In general, the instrument is then calibrated for all target compounds. An initial calibration curve is produced to define the working range to establish criteria for identification. This initial calibration is evaluated on a daily basis to ensure that the system is within calibration. If the daily standard does not meet the established criteria, the system is recalibrated.

Gas Chromatography – Each chromatographic system is calibrated prior to performance of analyses. Initial calibration consists of determining the working range, establishing limits of detection, and establishing retention time windows. The calibration is checked as required to ensure that the system remains within specifications. In addition, continuing calibrations are performed at frequencies required by the method used. If the calibration checks do not meet established criteria, corrective action that may include recalibration and reanalysis of samples is taken.

<u>Metals</u> – The Remediation Laboratory is currently evaluating the needs for purchase of metal analysis instrumentation for the OU-2 project. If purchased, analysis for metals will involve two types of analytical instrumentation: inductively coupled argon plasma emission spectroscopy (ICP), and atomic absorption spectroscopy (AA).

An ICP is calibrated prior to use by analyzing a multi-element calibration standard. The calibration is then verified using standards from an independent source. For CLP a linear range verification check standard is analyzed and reported quarterly for each element analyzed by ICP. This concentration is the upper limit of the ICP linear range and any result found above this limit must be diluted and reanalyzed. The calibration is monitored throughout the day by analyzing a Continuing Calibration Blank (CCB) and a Continuing Calibration Verification Standard (CCV). If the verification standard does not meet established criteria, corrective action is performed.

All samples for furnace analyses are single spiked. The method of standard additions or sample dilution is used when the single spike analysis indicates matrix interferences are present.

Wet Chemistry - The field of classical (wet) chemistry involves a variety of instrumental and wet chemical techniques. Calibration and standardization procedures vary depending on the system and analytical methodology required for a specific analysis. The calibration is checked on an ongoing basis to ensure that the system remains within specifications. If the ongoing calibration check does not meet established criteria, analysis is halted and corrective action is taken. The procedures include examination of instrument performance and recalibration and reanalysis of samples back to the previous acceptable calibration check.

Methods performed at the laboratory are validated prior to sample analysis. Method validation involves the determination of sensitivity and linearity and reproducibility studies. This would include but are not limited to writing appropriate method SOPs and performing method detection limit studies.

Method sensitivity is determined by method or instrument detection limit studies. The procedure to determine the method detection limit (MDL) follows 40CFR Part 136 Appendix B (revision 1.1). The reporting limit for a given analyte may be derived from the MDL. MDL studies are conducted annually on all routine analytical methods.

The MDL is the approximate limit at which an analyte can be qualitatively detected using a specific method at a 99% confidence interval. The MDL is a statistically calculated value and measures the sensitivity of an entire method and is independent of device. The RL or Limit of Quantitation is the limit at which a compound can be qualitatively detected and quantified at a 99% confidence interval. The RLs are also set based on specific knowledge about the analyte, project specific requirements and/or regulatory requirements. The RL is always greater than the MDL is typically set at 3-5 times the MDL.

Toms River Corporate Remediation Laboratory reports results to the calculated MDLs or to sample specific RLs. For most methods, the low calibration standard is set as the laboratory Reporting Limit (RL) to monitor method sensitivity per instrument per calibration. Sample specific RLs are derived by taking into account various sample specific data, which can include the amount of the sample subject to testing, percent moisture, dilution factors, interferences and the base RLs for the analysis.

In some cases, it is appropriate to report values between the MDL and the RL. In this region, an analyte can be qualitatively detected, but not accurately quantified. Any data point reported in this region is flagged with a "J" for organics and a "B" for inorganics, to indicate that it is an estimated value.

#### 22.0 <u>DATA REDUCTION</u>

The individual analysis on the report are initially received by the analyst while performing the testing. The analyst ensures that all quality control information is in-control and correct before processing the data. In general, an analyst will process data in one of the following ways:

- Manual computation of results with manual reporting.
- Computer computation of results with manual reporting.
- Computer computation and reporting of results.

If the analyst manually processes the data, all steps in the computation are provided for review including the source of the input parameters such as response factors, dilution factors, and calibration constants. All calculations of manually processed data are checked during secondary review.

For data that is processed using a computer and then entered into the LIMS by an analyst or data entry personnel, a hard copy of the computer generated results is kept and uniquely identified with the sample number and any other preparation or dilution information as may be needed. The hard copy results are used for data validation and secondary review.

If computer processed data is directly acquired from the instrumentation, hard copies of the actual data are made and the analyst verifies that the following are correct before releasing instrumental data to the reporting system:

- Sample numbers
- Calibration constants / response factors
- Output parameters such as units and compound names
- Numerical values used for detection limits
- Dilution and preparation factors

The hard copy of the results is used for data validation and review. After initial demonstration of proficiency of computerized programs, computer calculations are randomly spot checked while the manual entry of every result is verified.

#### 23.0 <u>DATA REVIEW</u>

The analyst who generates the data (i.e., log in, prepares and/or runs the samples) is responsible for primary review. The primary review is often referred to as "bench-level" review. One of the most important aspects of primary review is to make sure that the test instructions are clear, and that all project specific requirements have been understood and followed. Once the analysis is complete, the primary reviewer ensures that sample preparation information is complete, accurate and documented, calculations have been performed correctly, quantitation have been performed accurately, qualitative identifications are accurate, client specific requirements have been followed, method and process SOPs have been followed, method QC criteria have been met, QC samples are within established limits, dilution factors are correctly recorded and applied, non-conformances and/or anomalous data have been properly documented and appropriately communicated, and COC procedures have been followed. If the instrument calibration and recoveries of all quality control samples are within specified tolerances, then the data are presented for secondary review. If instrument calibration or the recoveries of any quality control samples exceed specified tolerances, then affected sample results are evaluated and, generally, the samples are submitted for re-analysis. Any manual integration that occurs are dated and signed and, if appropriate, noted in the case narrative.

Secondary review (a complete technical review) is typically conducted by the Laboratory Manager to determine if analytical results are acceptable. All calibrations, manual calculations and transcriptions are checked for accuracy and quality control sample results are evaluated against specific tolerances. If discrepancies or deficiencies exist in the analytical results, then corrective action is taken.

Correlation of results for different parameters of a sample is evaluated at this time before the data is presented in a final project report.

#### 24.0 <u>DATA REPORTING</u>

All of the information necessary for the interpretation of the test results and all information required by the methods used is included on the project analysis report.

The content criteria listed below apply to all project reports:

- Title
- Laboratory Name
- Unique Laboratory Project Number
- Total Number of Pages (report must be paginated)
- Name of Analyst
- Project Name (if applicable)
- Laboratory Sample Identification
- Sample Identification
- Matrix and/or Description of Sample
- Dates: Sample Receipt, Collection, Preparation and/or Analysis Date
- Definition of Data Qualifiers
- Reporting Units
- Test Method

The following are required where applicable to the specific test method or matrix:

- Solid Samples: Indicate Dry or Wet Weight
- Indication by flagging where results are reported below the quantitation limit.

A Project Narrative and/or Cover Letter is included with each project report and at a minimum includes an explanation of any and all of the following occurrences:

- Non-conformances
- "Compromised" sample receipt (see Section 19.0)
- Method Deviations
- QC criteria failures

The Laboratory Manager or his/her designee authorizes the releases of the project report with a signature.

If revisions to project reports are required after issue, a revised report will be in the form of a separate document and/or electronic data deliverable. The revised report is clearly identified as revised with the date of revision and the initials of the person making the revision. Specific pages of a project report may be revised using the above procedure with an accompanying cover letter indicating the page numbers of the project revised. The original version of the project report must be kept intact and the revisions and cover letter included in the project files.

Subcontracted data is clearly identified as such, and the name, address, and telephone number for the laboratory performing the test is included in the project report. Subcontracted results from laboratories external to Toms River Corporate Remediation Laboratory are not reported on Toms River Corporate Remediation Laboratory report forms or Toms River Corporate Remediation Laboratory letterhead.

Electronic Data Deliverables (EDD) are routinely offered as part of the Toms River Corporate Remediation Laboratory's services. The laboratory offers a variety of EDD formats like spreadsheet data summary in Excel.

The Toms River Corporate Remediation Laboratory offers a wide range of project reporting formats, including EDDs, short report formats, and complete data deliverable packages modeled on the Contract Laboratory Protocol (CLP) guidelines.

After all analytical data has been reviewed, the final report is assembled for submission to the client. The laboratory currently offers four levels for reporting analytical results.

<u>Results</u> data consist of measurements taken during field analysis with the report consisting of results only.

<u>Results/OC</u> reporting consists of an analytical report with results and Internal quality control results.

<u>Reduced Deliverables</u> reporting consists of an analytical report with internal quality control results reported; these include laboratory control standards, surrogate spike recoveries, and method blank results.

Regulatory Format (RF) refers to data submitted in CLP-like format. RF is defined by the submission of QA/QC supporting material including the raw laboratory data similar to that provided with CLP Statements of Work (SOW). RF reporting includes narrative, analytical results, supportive documentation including all raw data and preparation sheets, and all documentation related to chain of custody. Once the document is assembled, the sections are distinguished with index tabs. The pages are paginated in numerical order and photocopied. Copy(s) of the documentation are sent to the client, and the original document is retained in storage for a minimum of five (5) years.

# 25.0 <u>DOCUMENT CONTROL</u>

The following documents are controlled at Toms River Corporate Remediation Laboratory:

- Quality Assurance Manual
- Standard Operating Procedures (SOP)

Security and control of documents is necessary to ensure that confidential information is not distributed and that all current copies of a given document are from the latest applicable revision. Unambiguous identification of a document is through a header placed in the upper right or left hand corner of each page. The header contains the document name, revision number, revision date and number of pages.

Standard Operating Procedures (SOPs) contain the basic procedures and practices the laboratory uses to analyze a method. These procedures provide a basis for training new associates and for showing customers how analyses are performed.

SOPs are written procedures for standardized methods (i.e., SW-846, EPA-600 methods) and are supplied primarily to document specific laboratory procedures used to satisfy the general requirements specified in the individual methods and to explain any differences between the application of the established method and the published procedure. If any difference exists between the Toms River Corporate Remediation Laboratory's SOP and a standard method's specific procedures, method validation studies are performed to document the fact that the change does not adversely affect the applicability of the method. In general, every effort is made to adhere to the protocols of the standard method.

#### 26.0 <u>RECORDS</u>

The laboratory retains all records related to sample analysis including raw data, calculations, derived data, calibrations and test reports. These records are maintained in a systematic manner for a minimum of five (5) years. Longer periods of storage may be arranged at the time of project initiation.

Mistakes are never erased deleted or written over. They are corrected by drawing a single line through the error and entering the correction alongside. The correction is then initialed and dated by the responsible person.

Each log book page or, as required, each entry is dated and initialed by the analyst at the time the record is made. Pages inserted into logbooks are taped or glued onto a clean, bound page. Specific information on the types of logbooks, format of entry, and other pertinent information are contained in the appropriate sectional SOPs.

The Laboratory Manager and/or Laboratory Chemists and Technicians periodically review laboratory notebooks for accuracy, completeness, and compliance to this QAM. If all entries on the pages are correct, then the Laboratory Manager or the Chemist/Technician initials and dates the reviewed pages.

Corrective action is taken for erroneous entries before the Laboratory Manager signs off with approval.

# 27.0 <u>PERFORMANCE ASSESSMENT</u>

The Remediation Laboratory only services the Corporate Remediation Department and, as such, does not retain certification by any State or Federal Government Agency. However, the laboratory does perform analyses of performance evaluation samples periodically. Performance evaluation samples for water and soil matrices will be submitted as a separate submission to the regulatory agency.

Performance evaluation samples for air analysis are not available, but the laboratory will also submit analysis of a known spiked air sample, which includes the chemicals of concern, to demonstrate its ability to produce accurate results.

#### 28.0 <u>CORRECTIVE ACTION</u>

When errors, deficiencies, or out-of-normal situations exist, the QA program provides systematic procedures, called "corrective actions" to resolve problems and restore proper functioning to the analytical system. Any laboratory employee is authorized to initiate corrective action.

Laboratory personnel are alerted that corrective actions may be necessary if:

- QC data are outside the acceptance limits for precision and accuracy;
- Blanks contain contaminants outside of acceptable limits;
- Undesirable trends are detected in spike recoveries or RPD between duplicates;
- There are unusual changes in detection limits;
- Deficiencies are detected by the Laboratory Manager during internal or external audits or from the results of performance evaluation samples; or
- Inquiries concerning data quality are received from project managers.

Corrective action procedures are often handled at the bench level by the analyst, who reviews the preparation or extraction procedure for possible errors, checks the instrument calibration, spike and calibration mixes, instrument sensitivity, and so on. If the problem persists or cannot be identified, the matter is referred to the Laboratory Manager for further investigation. Once resolved, full documentation of the corrective action procedure is filed. Corrective action documentation (Attachment E) is routinely reviewed by the Laboratory Manager.

# 29.0 <u>CORRECTION OF ERRONEOUS REPORTS</u>

The discovery that, for whatever reason, an erroneous result has been released initiates immediate corrective action to rectify the error. If the error is discovered internally then the client is immediately notified by the Laboratory Manager to prevent use of the incorrect report for decision making. If a client or validator has a question or finds a deficiency concerning the data submittal, the Laboratory Manager is responsible for communicating and implementing the corrective action in the laboratory. The analytical results and all supportive documentation in question are submitted to the appropriate section for evaluation. Should a re-analysis be necessary, it is initiated if the sample is still available using a Corrective Action Report Form (Attachment E). If the re-analysis is out of holding time the result is qualified. If revisions to the report are necessary, corrections are made, initialed and dated; or if the complete new report (resubmission) is requested, all the pages with addendum are renumbered.

Hard copies and revised electronic deliverables (where applicable) are given to the Laboratory Manager for re-submission to the client or validator. Revision of the case narrative, should it become necessary, is the responsibility of the Laboratory Manager. In some instances, clients request that sample handling information, recalculations or qualitative judgments are re-checked in order to ensure data integrity. In this case, resubmission of the data may not be necessary unless a problem is detected.

# 30.0 <u>DEPARTURES FROM POLICIES</u>

Departures from laboratory Standard Operating Procedures are not permitted unless the approval of the Laboratory Manager is obtained prior to implementation of the departure. These exceptions must be documented with a SOP and/or highlighted in the case narrative, which accompanies the analytical results. Additionally, method validation studies and method detection limit studies are performed as applicable.

#### 31.0 AUDIT

The Remediation Laboratory does not participate in state and federal programs. The laboratory seeks to perform project-specific analysis under the guidance of the EPA or State at the Corporation remediation sites. As such, the Laboratory Manager will conduct quarterly internal audits and formally document the findings.

The audit program is focused on the following areas:

- Maintenance of acceptable and complete SOPs
- Maintenance of training records
- Maintenance of notebooks
- Maintenance of instrument records
- Evaluation of standard control records
- Evaluation of sampling handling procedures
- Evaluation of data handling and storage procedures

# 32.0 <u>OUALITY SYSTEM REVIEW BY MANAGEMENT</u>

A review of the quality system is conducted annually. Management, including but not limited to the Laboratory Manager reviews all aspects of the laboratory's quality system. The purpose of this review is to ensure the suitability and effectiveness of the Toms River Corporate Remediation Laboratory's program as well as provide opportunity for improvements. The review includes the following topics:

- Reports from audits by clients and regulatory agencies
- Reports from internal audits
- Results of proficiency studies
- Corrective actions from the past year and a review of their implementation
- Details of complaints from clients and their resolution
- Training goals and objectives
- Staff, facility and equipment resources
- Future plans and goals

In addition to this annual review, daily meetings occur to communicate issues and needs which arise during the course of operations.

#### 33.0 <u>TERMS AND DEFINITIONS</u>

<u>Accuracy</u> - the degree of agreement between a measurement and true or expected value, or between the average of a number of measurements and the true or expected value.

<u>Audit</u> – a systematic evaluation to determine the conformance to specifications of an operational function or activity.

<u>Batch</u> — environmental samples, which are prepared and/or analyzed together with the same process, using the same lot(s) of reagents. A preparation batch is composed of environmental samples of the same matrix. Where no preparation method exists (e.g., volatile organics, water) the batch is defined as environmental samples that are analyzed together with the same process, reagents and personnel. An analytical batch can also include prepared samples originating from various environmental matrices and can exceed 20 samples.

<u>Chain of Custody (COC)</u> – an unbroken trail of accountability that ensures the physical security of samples, data and records.

<u>Confirmation</u> – verification of the presence of a component using an additional analytical technique. These may include second column confirmation, alternate wavelength, derivatization, mass spectral interpretation, alternative detectors, or additional cleanup procedures.

<u>Corrective Action</u> – action taken to eliminate the causes of an existing non-conformance, defect or other undesirable situation in order to prevent recurrence.

<u>Data Audit</u> – a qualitative and quantitative evaluation of the documentation and procedures associate with environmental measurements to verify that the resulting data are of acceptable quality.

<u>Demonstration of Capability (DOC)</u> - procedure to establish the ability to generate acceptable accuracy and precision.

<u>Document Control</u> – the act of ensuring that documents (electronic or hardcopy and revisions thereto) are proposed, reviewed for accuracy, approved for release by authorized personnel, distributed properly, and controlled to ensure use of the correct version at the location where the prescribed activity is performed.

Equipment Blank - a portion of the final rinse water used after decontamination of field equipment; also referred to as Rinsate Blank and Equipment Rinsate.

<u>Field Blank</u> - a blank matrix brought to the field and exposed to field environmental conditions.

<u>Holding Time</u> – the maximum time that a sample may be held before preparation and/or analysis as promulgated by regulation or as specified in a test method.

<u>Instrument Blank</u> – a blank matrix that is the same as the processed sample matrix (i.e., extract, digestate, condensate) and introduced onto the instrument for analysis.

Internal Chain of Custody – an unbroken trail of accountability that ensures the physical security of samples, data and records. Internal Chain of custody refers to additional documentation procedures implemented within the laboratory that includes special sample storage requirements, and documentation of all signature and/or initials, dates and times of personnel handling specific samples or sample aliquots.

Instrument Detection Limit (IDL) — the minimum amount of a substance that can be measured on a specific instrument, with a specified degree of confidence that the amount is greater than zero. The IDL is associated with the instrumental portion of a specific method only, and sample preparation steps are not considered in its derivation. An IDL value, by definition, has an uncertainty of  $\pm 100\%$ . The IDL thus represents a range where qualitative detection occurs on a specific instrument. Quantitative results are not produced in this range.

<u>Laboratory Control Sample (LCS)</u> – a blank matrix spiked with a known amount of analyte(s), processed simultaneously with, and under the same conditions as, samples through all steps of the analytical procedure.

<u>Matrix</u> - the substrate of a test sample. Common matrix descriptions are listed in the Table below.

| Aqueous        | Aqueous sample excluded from the definition of Drinking Water or Saline/Estuarine source. Includes surface water, groundwater and effluents. |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Drinking Water | Aqueous sample that has been designated a potable water source.                                                                              |
| Saline         | Aqueous sample from an ocean or estuary, or other salt-water source such as the Great Salt Lake.                                             |
| Liquid         | Liquid with <15% settleable solids.                                                                                                          |
| Solid          | Soil, sediment, sludge or other matrices with ≥15% settleable solids.                                                                        |
| Waste `        | A product or by-product of an industrial process that results in a matrix not previously defined.                                            |

<u>Matrix Duplicate (MD)</u> – duplicate aliquot of a sample processed and analyzed independently; under the same laboratory conditions; also referred to as Sample Duplicate, Laboratory Duplicate.

Matrix Spike (MS) - field sample to which a known amount of target analyte(s) is added.

Matrix Spike Duplicate (MSD) - a replicate matrix spike.

<u>Method Blank</u> – a blank matrix processed simultaneously with, and under the same conditions as, samples through all steps of the analytical procedure.

<u>Method Detection Limit (MDL)</u> - the minimum amount of a substance that can be measured with a specified degree of confidence that the amount is greater than zero. Also referred to as Limit of Detection (LOD).

<u>Non-conformance</u> – an indication, judgment, or state of not having met the requirements of the relevant specifications, contract, or regulation.

<u>Precision</u> – an estimate variability. It is an estimate of agreement among individual measurements of the same physical or chemical property, under prescribed similar conditions.

<u>Preservation</u> – refrigeration and/or reagents added at the time of sample collection to maintain the chemical, physical and/or biological integrity of the sample.

<u>Proficiency Testing</u> – determination of the laboratory calibration or testing performance by means of inter-laboratory comparisons.

<u>Proficiency Test (PT) Sample</u> – a sample, the composition of which unknown to the analyst, that is provided to test whether the analyst/laboratory can produce analytical results within specified performance limits.

<u>OAM (Quality Assurance Manual)</u> – a document stating the quality policy, quality system and quality practices of the laboratory. The QAM may include by reference or other documentation relating to the laboratory's quality system.

<u>Quality Assurance (Project) Plan (QAPP)</u> – a formal document describing the detailed quality control procedures by which the quality requirements defined for the data and decisions pertaining to a specific project are to be achieved.

<u>Quality Control (QC)</u> - the overall system of technical activities, the purpose of which is to measure and control the quality of a product or service.

<u>Quality Control Sample</u> – a control sample generated at the laboratory or in the field, or obtained from an independent source, used to monitor a specific element in the sampling and/or testing process.

<u>Quality System</u> – a structured and documented management system describing the policies, objectives, principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for ensuring quality in its work processes, products (items), and services. The quality system provides the framework for planning, implementing, and assessing work performed by the organization and for carrying out required QA/QC.

<u>Quantitation Limit (QL)</u> – the lowest point at which a substance can be quantitatively measured with a specified degree of confidence using a specific method. The QL can be based on the MDL, and is generally calculated as 3-5 times the MDL, however, there are analytical techniques and methods where this relationship is not applicable. Also referred to as Practical Quantitation Level (PQL), Estimated Quantitation Level (EQL).

<u>Raw Data</u> – any original information from a measurement activity or study recorded in laboratory notebooks, worksheets, records, memoranda, notes, or exact copies thereof and that are necessary for the reconstruction and evaluation of the report of the activity or study. Raw data may include photography, microfilm or microfiche copies, computer printouts, magnetic/optical media including dictated observations, and recorded data from automated instruments. Reports specifying inclusion of "raw data" do not need all of the above included, but sufficient information to create the reported data.

<u>Record Retention</u> – the systematic collection, indexing and storage of documented information under secure conditions.

<u>Reference Standard</u> – a standard, generally of the highest metrological quality available at a given location, from which measurements made at that location are derived.

<u>Reporting Limit (RL)</u> – the level to which data is reported for a specific test method and/or sample. The RL is generally related to the QL. The RL must be minimally at/or above the MDL.

Resource Conservation and Recovery Act (RCRA) - legislation under 42 USC 321 et seq. (1976).

<u>Safe Drinking Water Act (SDWA)</u> – legislation under 42 USC 300f et seq. (1974) (Public Law 93-523).

<u>Sampling and Analysis Plan (SAP)</u> — a formal document describing the detailed sampling and analysis procedures for a specific project.

<u>Selectivity</u> - the capability of a method or instrument to respond to a target substance or constituent in the presence of non-target substances.

<u>Sensitivity</u> - the capability of a method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest.

Spike - a known amount of an analyte added to a blank, sample or sub-sample.

<u>Standard Operating Procedure (SOP)</u> – a written document which details the method of an operation, analysis or action whose techniques and procedures are thoroughly prescribed and which is accepted as the method for performing certain routine or repetitive tasks.

Storage Blank - a blank matrix stored with field samples of a similar matrix.

<u>Test Method</u> - defined technical procedure for performing a test.

<u>Traceability</u> - the property of a result of a measurement that can be related to appropriate international or national standards through an unbroken chain of comparisons.

<u>Trip Blank</u> – a blank matrix placed in a sealed container at the laboratory that is shipped, held unopened in the field, and returned to the laboratory in the shipping container with the field samples.

A A C #3 M E

# LABORATORY QUALITY ASSURANCE PROJECT PLAN

May 16, 2002 (Revised July 1, 2004)

**WARNING:** The information contained herein is of a highly confidential and proprietary nature. Lancaster Laboratories, Inc. specifically prohibits the dissemination or transfer of this information to any person or organization not directly affiliated with the project for which it was prepared.

# **GROUP A**

# **PROJECT MANAGEMENT**

Element A1 Revision No. 2 Date: 07/01/04 Page 1 of 1

## A1. Title and Approval Sheet

Laboratory Quality Assurance Project Plan

Lancaster Laboratories, Inc.

Approving Official:

Kathleen Loewen, B.S., Quality Assurance Officer

7/08/04

Date

Element A2 Revision No. 2 Date: 07/01/04

Page 1 of 2

## A2. Table of Contents

|                                                                                 | Section                                                         | Pages | Revision | Date     |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|----------|----------|
|                                                                                 | Project Management                                              |       |          |          |
| A1                                                                              | Title and Approval Sheet                                        | 1     | 2        | 07/01/04 |
| A2                                                                              | Table of Contents                                               | 2     | 2        | 07/01/04 |
| А3                                                                              | Distribution List                                               | 1     | 0        | 05/16/02 |
| A4                                                                              | Project/Task Organization                                       | 5     | 1        | 07/01/04 |
| A5                                                                              | Problem Definition/Background                                   | 1     | 1        | 07/01/04 |
| <b>A6</b>                                                                       | Project/Task Description                                        | 1     | 1        | 07/01/04 |
| A7                                                                              | Quality Objectives and Criteria                                 | 3     | 2        | 07/01/04 |
| <b>A8</b>                                                                       | Specialized Training/Certification                              | 2     | 2        | 07/01/04 |
| A9                                                                              | Documents and Records                                           | 6     | 1        | 07/01/04 |
|                                                                                 | Measurement/Data Acquisition                                    |       |          |          |
| B1                                                                              | Sampling Process Design                                         | 1     | 0        | 05/16/02 |
| B2                                                                              | Sampling Methods Requirements                                   | 4     | 1        | 07/01/04 |
| В3                                                                              | B3 Sample Handling and Custody Requirements                     |       | 1        | 07/01/04 |
| B4                                                                              | Analytical Methods Requirements                                 | 43    | 2        | 07/01/04 |
| <b>B</b> 5                                                                      | Quality Control                                                 | 36    | 2        | 07/01/04 |
| B6 Instrument/Equipment Testing,<br>Inspection, and Maintenance<br>Requirements |                                                                 | 4     | 2        | 07/01/04 |
| B7                                                                              | Instrument Calibration and Frequency                            | 5     | 2        | 07/01/04 |
| B8                                                                              | Inspection/Acceptance Requirements for Supplies and Consumables | 1     | 1        | 07/01/04 |
| B9                                                                              | Data Acquisition Requirements                                   | 2     | 1        | 07/01/04 |
| B10                                                                             | Data Management                                                 | 10    | 1        | 07/01/04 |

Element A2 Revision No. 2 Date: 07/01/04 Page 1 of 2

|         | Section                                   | Pages | Revision | <u>Date</u> |
|---------|-------------------------------------------|-------|----------|-------------|
|         | Assessment and Oversight                  |       |          |             |
| C1      | Assessments and Response Actions          | 20    | 1        | 07/01/04    |
| C2      | Reports to Management                     | 1     | 1        | 07/01/04    |
|         | Data Validation and Usability             |       |          |             |
| D1      | Data Review, Verification, and Validation | 2     | 1        | 07/01/04    |
| D2      | Verification and Validation Methods       | 1     | 1        | 07/01/04    |
| D3      | Reconciliation with User<br>Requirements  | 4     | 1        | 07/01/04    |
| Appendi | c A – Example Report Forms                | 104   |          |             |

Element A3 Revision No. 0 Date: 05/16/02 Page 1 of 1

## A3. Distribution List

This is a generic QA Project Plan; therefore, a distribution list will not be included. A list of organizations and persons that receive the generic QA Project Plan is maintained at Lancaster Laboratories.

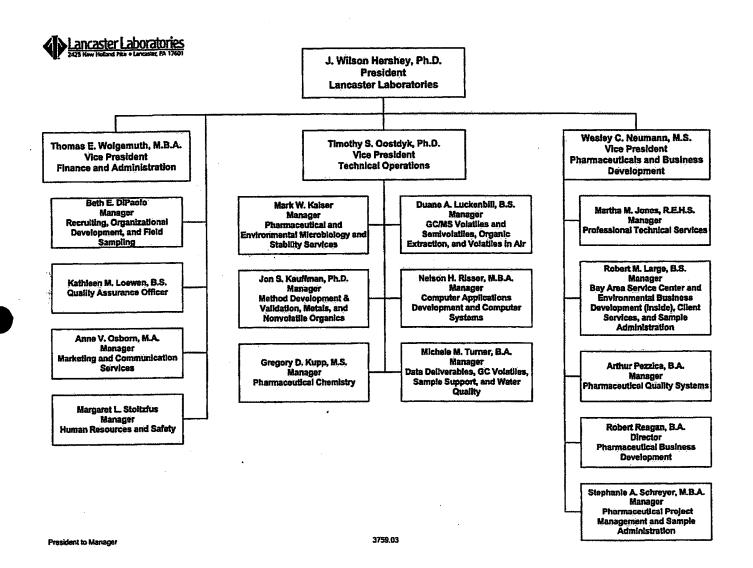
Element A4
Revision No. 1
Date: 07/01/04
Page 1 of 5

#### A4. Project/Task Organization

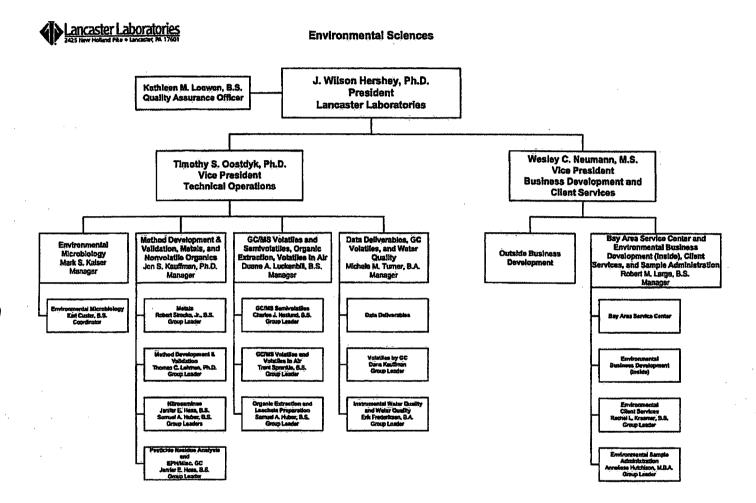
The objectives of the laboratory Quality Assurance Program are to establish procedures which will ensure that data generated in the laboratory are within acceptable limits of accuracy and precision, to ensure that quality control measures are being carried out, and to ensure accountability of the data through sample and data management procedures. To this end, a Quality Assurance Department has been established. The Quality Assurance Officer reports directly to the President of Lancaster Laboratories and has no direct responsibilities for data production, thus avoiding any conflict of interest. The Quality Assurance Officer is the responsible party for maintaining the official, approved QA project plan.

The attached organizational charts show key managerial personnel. Resumes of key individuals may be found in the *Environmental Quality Policy Manual*.

The Sample Administration Group will be responsible for receiving samples, signing the external chain of custody, checking sample condition, assigning unique laboratory sample identification numbers, and initiating internal chain-of-custody forms. Sample Support personnel will be responsible for assigning storage locations, checking and adjusting preservation, homogenizing the sample as needed, and discarding samples. The Bottles Group is responsible for prepreserving bottles as required by the method, preparing trip blanks and field blanks when required, and packing the bottle kits, then sending them to the client's requested location.

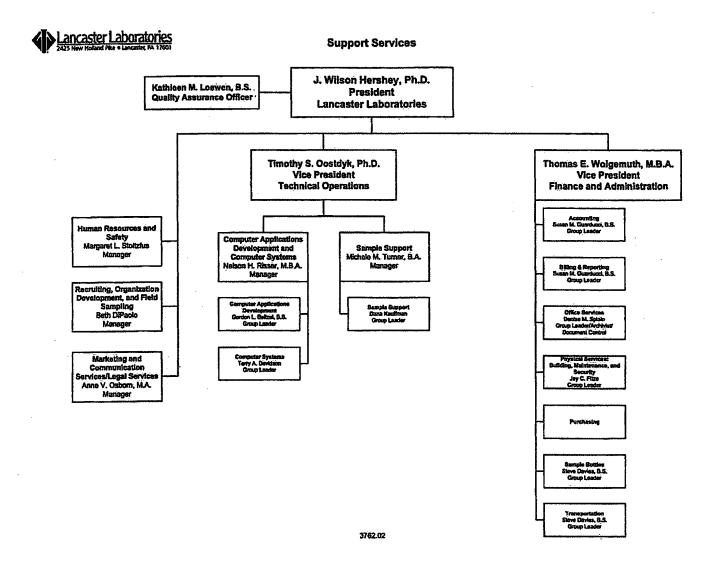

Group leaders listed in each technical area are responsible for performing laboratory analyses, quality control as specified in the methods, instrument calibration, and technical data review. Data is reported using a computerized sample management system, which tracks sample progress through the laboratory and generates client reports when all analyses are complete. Quality control data is entered onto the same system for purposes of charting and monitoring data quality.

Element A4
Revision No. 1
Date: 07/01/04
Page 2 of 5


The Quality Assurance Department is responsible for reviewing quality control data, conducting audits in the laboratory and reporting findings to management, maintaining current copies of all analytical methods, reviewing and approving Standard Operating Procedures (SOPs), submitting blind samples to the laboratory, and ensuring that appropriate corrective action is taken when quality problems are observed.

Data package deliverables are available upon request. The Quality Assurance Department reviews a representative sampling of the deliverables for completeness and to ensure that all quality control checks were performed and met specifications. This step includes a review of holding times, calibrations, instrument tuning, blank results, duplicate results, matrix spike results, surrogate results, and laboratory control samples (where applicable). Every attempt to meet specifications will be made, and any item outside of the specifications will be noted in the narrative. The laboratory will not validate data with regard to usability since this generally requires specific knowledge about the site. All data is archived according to corporate procedures.

Element A4 Revision No. 1 Date: 07/01/04 Page 3 of 5




Element A4 Revision No. 1 Date: 07/01/04 Page 4 of 5



3760.03

Element A4 Revision No. 1 Date: 07/01/04 Page 5 of 5



Element A5
Revision No. 1
Date: 07/01/04
Page 1 of 1

#### A5. Problem Definition/Background

The purpose of this generic QA Project Plan is to provide specific quality assurance and quality control procedures involved in the generation of data of acceptable quality and completeness. This QA Project Plan provides the laboratory requirements to meet *EPA Requirements for Quality Assurance Project Plans*, EPA QA/R-5, March 2001 and EPA's *Guidance for Quality Assurance Project Plans*, EPA QA/G-5, December 2002.

The procedures in this QA Project Plan have been standardized to make them applicable to all types of environmental monitoring and measurement projects. However, under certain site-specific conditions, not all of the procedures discussed in this document may be appropriate. In such cases, it will be necessary to adapt the procedures to the specific conditions of the investigation.

The analyses in this document are representative of what the laboratory performs but are not all encompassing. It is intended to provide a client with an overview of systems and procedures at Lancaster Laboratories. It is not project or site-specific and may not address all analyses required for a particular project. If additional analytical information is necessary, arrangements can be made with Lancaster Laboratories to generate a project specific or site specific QAPP.

Element A6 Revision No. 1 Date: 07/01/04 Page 1 of 1

#### A6. Project/Task Description

Tests will be performed according to the analytical methodology set forth in the USEPA Test Methods for Evaluating Solid Waste—Physical/Chemical Methods, SW-846, 3rd edition, Update III, December 1996 and Methods for Chemical Analysis of Waters and Wastes, USEPA, 600/4-79-020. SW-846 provides specific analytical procedures to be used and defines the specific application of these procedures. Proven instruments and techniques will be used to identify and measure the concentrations of volatiles, semivolatiles, and pesticide compounds and/or the inorganic elements. The laboratory will employ state-of-the-art GC/MS and/or GC techniques to perform all organic analysis. Inorganic analyses will be performed using graphite furnace atomic absorption spectophotometry (GFAA), inductively coupled plasma (ICP), cold vapor AA, and ICP-MS. Instrumental wet chemistry will be using an auto-analyzer spectrophotometer, TOC analyzer, TOX analyzer, and Ion Chromatography. Classic wet chemistry will use appropriate instrumentation. The client is responsible for providing specifics on the project site.

Element A7
Revision No. 2
Date: 07/01/04
Page 1 of 3

#### A7. Quality Objectives and Criteria

Quality assurance is the overall program for assuring reliability of monitoring and measurement data. Quality control is the routine application of procedures for obtaining set standards of performance in the monitoring and measurement process. Data quality requirements are based on the intended use of the data, the measurement process, and the availability of resources. The quality of all data generated and processed during this investigation will be assessed for precision, accuracy, representativeness, comparability, and completeness. These specifications will be met through precision and accuracy criteria as specified in Element B5. Detection limits are presented in Element B4.

To ensure attainment of the quality assurance objectives, SOPs are in place detailing the requirements for the correct performance of laboratory procedures. As described in LOM-SOP-LAB-201, "Writing and Reviewing Lancaster Laboratories Policies and Operating Procedures," the laboratory SOPs are written and organized into a four-tiered hierarchy:

- 1. Corporate policies and Quality Policy Manuals
- 2. Laboratory Operations Manual SOPs
- 3. Departmental Procedures
- 4. Quality Records (notebooks, logbooks, forms, etc.)

All SOPs are approved by the QA Department prior to implementation. The distribution of current SOPs and archiving of outdated ones are controlled by the Office Services Group through a master file. Additional information is provided in the *Environmental Quality Policy Manual (EQPM)*, including general information on Document Control, Archiving, an index of our SOPs, etc. Table A7-1 provides an index of SOPs in place in support of the Quality Assurance objectives. These requirements are supplemented by the procedures in the laboratory and analytical SOPs.

Element A7 Revision No. 2 Date: 07/01/04 Page 2 of 3

#### Table A7-1

| Document #      | Document Title                                                                 |
|-----------------|--------------------------------------------------------------------------------|
| EQPM            | Environmental Quality Policy Manual                                            |
| LOM-SOP-ES-209  | Investigation and Corrective Action of Noncompliant Data                       |
| LOM-SOP-ES-212  | Internal Chain-of-Custody Documentation                                        |
| LOM-SOP-ES-213  | Quality Control Records                                                        |
| LOM-SOP-ES-215  | Subcontracting to Other Laboratories                                           |
| LOM-SOP-ES-216  | Proficiency Test Samples                                                       |
| LOM-SOP-ES-219  | Documentation for the Parallax Analysis Information Function                   |
| LOM-SOP-ES-220  | Sample Storage and Discard                                                     |
| LOM-SOP-ES-221  | Analytical Methods for Nonstandard Analyses                                    |
| LOM-SOP-ES-222  | Instrument and Equipment Maintenance and Calibration                           |
| LOM-SOP-ES-223  | Missed Holding Time Reports                                                    |
| LOM-SOP-ES-224  | Data Rounding, Parallax Entry, Verification and Reporting                      |
| LOM-SOP-ES-225  | Reagents and Standards                                                         |
| LOM-SOP-ES-226  | Validation and Authorization of Analytical Methods                             |
| LOM-SOP-LAB-201 | Writing and Reviewing Lancaster Laboratories Policies and Operating Procedures |
| LOM-SOP-LAB-202 | Document Control                                                               |
| LOM-SOP-LAB-203 | Data and Record Storage, Security, Retention, Archival, and Disposal           |
| LOM-SOP-LAB-204 | Regulatory Training                                                            |
| LOM-SOP-LAB-210 | Employee Training Program                                                      |
| LOM-SOP-LAB-217 | Investigation and Corrective Action Reporting for Laboratory Problems          |
| LOM-SOP-LAB-218 | Procurement of Laboratory Supplies                                             |

Element A7 Revision No. 2 Date: 07/01/04 Page 3 of 3

#### Table A7-1 - Continued

| Document #      | Document Title                                                                                       |
|-----------------|------------------------------------------------------------------------------------------------------|
| LOM-SOP-LAB-220 | Laboratory Notebooks, Logbooks, and Documentation                                                    |
| LOM-SOP-VAL-201 | Evaluation of Vendors of New Equipment, Instrumentation, Computerized Systems, and Computer Software |
| LOM-SOP-VAL-202 | Validation Inventory and Schedule                                                                    |
| LOM-SOP-VAL-203 | Validation Documentation                                                                             |
| LOM-SOP-VAL-204 | Retrospective Validation of Existing (Legacy) Systems                                                |
| LOM-SOP-VAL-205 | Change Control                                                                                       |
| LOM-SOP-VAL-206 | 21 CFR Part 11 Compliance Action Procedure                                                           |
| LOM-SOP-VAL-207 | Requirements for Purchasing and Implementing New Systems                                             |
| SOP-QA-127      | Handling of Client Technical Complaints (Investigations and Response)                                |
| SOP-QA-128      | Compliance with Good Laboratory Practice (GLP) Regulations                                           |
| SOP-QA-133      | Guidelines for Analytical Decision Making                                                            |

Element A8 Revision No. 2 Date: 07/01/04 Page 1 of 2

#### A8. Specialized Training/Certification

Lancaster Laboratories has a core curriculum of training that contains the basic courses relevant to all the employees. This in part, includes teaching the quality policy, quality assurance/quality control, ethics training, chemical hygiene training, health and safety classes, and any function specific training (i.e. GC, Statistics). Much of this training is performed at Lancaster Laboratories through the Human Resources Group. The following list shows examples of course offerings:

- Laboratory Technician Program: Designed for new employees who need to develop laboratory skills or who need a refresher on laboratory basics.
- Making Quality A Science: This course introduces why quality is important, explains Lancaster Laboratories quality philosophy and processes, and shows how to apply quality thinking and techniques on the job.
- Putting Our Values to Work: This seminar is designed to introduce new employees to the Statement of Values by examining how it translates to everyday jobs and includes ethical decision making.
- Chemical Hygiene Plan: Introduces the new employee to LLI's Chemical Hygiene Plan and the OSHA Lab Standard regulation and requirements.
- CPR: This course includes CPR history, relevance of CPR, cardiovascular disease, adult
  one-rescuer CPR, airway obstruction, safety in CPR, and use of the Automated External
  Defibrillator (AED).
- 24-hour HAZWOPER Emergency Response: Part of a proactive safety and emergency preparedness effort, this training is provided to a core group of people and volunteers who may respond to emergencies.
- Statistical Analysis: Topics include: rounding, mean standard deviation, normal distribution, z-scores, estimate, confidence intervals, hypothesis testing, one sample t-test, F-test, two sample t-test, paired t-test, ANOVA, outlier, calibration, etc.
- Gas Chromatography: Principles in GC, separation, qualitative/quantitative analysis, hardware, software, troubleshooting techniques, and the applications for GC use at Lancaster Laboratories.
- GC/MS Basics: Review of the fundamentals for GC/MS analysis.
- HPLC: Principles and practices on HPLC and the applications at Lancaster Laboratories.

Element A8 Revision No. 2 Date: 07/01/04 Page 2 of 2

If the training can not be accomplished at Lancaster Laboratories, then the employee may have off-site training. Within each technical or support group, the employee also receives on-the-job training before performing work independently. The details of this training are noted in each departmental group's SOPs.

The analysts must perform an initial demonstration of capability before using any test method; this is reviewed and signed by the technical department's management and Quality Assurance. The analyst must also complete an annual demonstration of capability for each test method per matrix.

All training and proficiencies are documented in each employee's training records as described in LOM-SOP-LAB-210, "Employee Training Program."

Element A9
Revision No. 1
Date: 07/01/04
Page 1 of 6

#### A9. Documents and Records

The group leaders in each technical area are responsible for overseeing the performance of analysis, quality control as specified in the method, instrument calibration, and technical data review. There is a secondary review on 100% of all data by a supervisor or experienced analyst prior to reporting the results. The Laboratory Information Management System (LIMS) tracks sample progress through the laboratory and generates client reports. During analysis, raw data must be recorded in indelible ink in bound notebooks or on printouts from instruments and is then entered into the LIMS against sample number and analytical method. Many instruments' data systems can transfer data directly to the LIMS, eliminating manual transcription. Quality control data is entered into the same system for purposes of charting and monitoring data quality. When all analyses are completed and have been verified by a supervisor or designee, the computer generates a report. The client receives a copy of the report containing the results of the analysis plus comments entered by the analyst where necessary. Copies of the reports and associated raw data are retained in secured archives.

Currently Lancaster Laboratories has over fifteen different reporting formats. Table A9-1 shows some of the formats available. Unless a specific report format is requested, the standard laboratory procedure is to report results to the limit of quantitation (LOQ) using report type 0 (see Table A9-1). However, it is possible to estimate to a value below the LOQ, if lower values are needed. Estimates are made to the reported method detection limit (MDL) which is based on annual MDL studies performed per method/matrix and instrument. An example analysis report is included in Appendix A.

The data packages are consistent with EPA CLP, NJDEP, and other state or agency formats. Custom formats are also accommodated. The data package types differ in the level of raw data and QC that would be submitted. Table A9-2 shows the formats offered and the information that can be included in a data package. Appendix A shows examples of the data package forms used for various types of methodology (i.e., GC/MS Volatiles, pesticides, etc.) The data packages are available as hard copy deliverables or a .pdf file on CDROM.

Element A9 Revision No. 1 Date: 07/01/04 Page 2 of 6

After the data package has been compiled, a content review and QA/QC compliance review on 100% of the data packages is performed by the Data Deliverable department or by other fully-trained staff. During the content review, the field chain of custody is compared to the reports to check the analysis performed, dates/times of collection, and sample designation. In addition to making sure data from all the appropriate departments is present, the following are also checked: method summary/reference, title page, table of contents, sample reference list, sample administration receipt documentation logs, and internal chains of custody (if required). In addition to making sure the data for all analyses are included, the following are also checked during the QA/QC compliance review: spot check results on the report against the raw data, ensure analyses performed within holding time, check quality control summary forms for compliance issues, and read the case narrative to make sure all nonconformances and anomalies are addressed.

In addition, the Quality Assurance Department reviews a representative sampling of the deliverables for completeness and to be sure that all batch quality control checks were performed and met specifications. This step includes review of holding times, calibrations, instrument tuning, blank results, duplicate results, matrix spike results, surrogate results, and laboratory control samples (where applicable). Every attempt to meet specifications will be made, and any item outside of the specifications will be noted in the case narrative. The laboratory will not validate data with regard to usability since this generally requires specific knowledge about the site.

Element A9
Revision No. 1
Date: 07/01/04
Page 3 of 6

Analytical results are delivered to the client in several electronic formats.

LLI supports more than twelve industry-standard EDD formats and well over 100 custom EDD formats. The data for the EDD and hardcopy reports are retrieved directly from our LIMS. LLI offers data deliverables in many custom formats using a standard ASCII formatted structure (tab-delimited text; comma-delimited text; fixed length), structures for Microsoft Excel spreadsheets, and Microsoft Access database tables. In addition, LLI offers these industry standard EDD formats:

- EDF (California/COELT)
- Enovis
- Enviro Data (Geotech)
- EquIS, and its many variations, including:
   Delaware "3DM"
   EPA Region 2 "MEDD"
   EPA Region 5 "ED MAN"
- ERPIMS (AFCEE)
- GIS/Key
- HazSite (HZRESULT table) for NJDEP
- Locus EIM
- TerraBase (Integrate)

We ensure the quality of our electronic data by providing 100 percent manual quality review of all data fields for new formats and a 10 percent review thereafter.

*LLabWeb.com* allows a client to access their verified analytical results round-the-clock through Lancaster Laboratories computer system using a secure Internet browser. Only analytical results on samples that are completed and verified can be accessed by this system.

Element A9
Revision No. 1
Date: 07/01/04
Page 4 of 6

A corporate procedure is in place for documentation, error correction, and control of logbooks (LOM-SOP-LAB-220, "Laboratory Notebooks, Logbooks, and Documentation"). The Office Services Group is responsible for maintaining the document and version control of the QA project plan and SOPs. All documents are assigned a revision number and date by the Office Services Group. They record all individuals or departments that have been issued a copy of a document and track that old versions are returned when the new one is issued. They are also responsible for maintaining the archive system to securely store records from all areas of the laboratory. LOM-SOP-LAB-203, "Data and Record Storage, Security, Retention, Archival, and Disposal" describes procedures for transferring data from the laboratories to the archives and maintaining the archives (including record retention schedule and disposal). The length of time for retention of hardcopy data is 10 years. All copies that are disposed of are incinerated. The Data Deliverables Group scans copies of the data packages onto CD-ROM for archiving. Electronic data files are saved and stored off-site for a minimum of 5 years.

Table A9-1
Data Reporting Formats

|        |    |                                                                   | Entered Result               |                    |                          |
|--------|----|-------------------------------------------------------------------|------------------------------|--------------------|--------------------------|
|        |    | Exactly Exactly Zero:                                             | MDL LOQ                      | Above<br>LOQ       | Limit Shown<br>on Report |
|        | 0  | <l< th=""><th>OQ</th><th>Rounded<br/>Result</th><th>LOQ</th></l<> | OQ                           | Rounded<br>Result  | LOQ                      |
| Format | 1  | N.D.                                                              | 4:00                         | Rounded-<br>Result | LOQ                      |
| Report | 3  | N.D.                                                              | Result with<br>"J" Qualifier | Rounded<br>Result  | LOQ                      |
| ď      | 4  | N.D.                                                              | Result with                  | Rounded<br>Result  | MDL                      |
|        | 10 |                                                                   | NDL >MDL<br>NDL >TMDL        | Rounded<br>Result  | Greater of MDL or TMDL   |
|        | 12 | MDL with "Ü" Qualifier                                            | Result with "J" Qualifier    | Rounded<br>Result  | MDL                      |

Key:

MDL = Method Detection Limit LOQ = Limit of Quantitation

BMQL = Below Minimum Quantitation Limit

TMDL = Target Method Detection Limit

J = Estimated Value

U = Client requested replacement for "<"

Element A9 Revision No. 1 Date: 07/01/04 Page 5 of 6

# Table A9-2 Data Package Formats

## Type I, NJ Regulatory (non-CLP)

- · Title page
- Sample reference list
- · Analysis request form, field chain of custody
- Sample administration receipt and documentation log
- Internal chain of custody (if required)
- Method summary/references
- Analysis reports/laboratory chronicles
- Case narrative
- Quality control summary; duplicates, matrix spike, matrix spike duplicate, blank, LCS, and surrogate recovery summary forms; GC/MS tuning summary and internal standard area summary
- Sample data; all raw sample data including instrument printouts and MDL summary form
- Standard Data; initial and continuing calibration summary forms, all raw initial and continuing calibrations and standardization data including instrument printouts
- Quality control raw data; all raw quality control sample data including printouts, preparation logs, run logs

#### Type II (non-CLP)

- Title page
- Sample reference list
- · Analysis request form, field chain of custody
- · Sample administration receipt and documentation log
- Internal chain of custody (if required)
- Method summary/reference
- Analysis reports/laboratory chronicles
- Case narrative
- Quality control summary; duplicate, matrix spike, matrix spike duplicate, blank, LCS, and surrogate recovery forms; GC/MS tuning, initial, and continuing calibration summary forms
- · Sample data; all raw sample data including instrument printouts
- Quality control raw data; blank raw data, preparation logs

## Type III, NJ Reduced Deliverables (non-CLP)

- Title page
- Sample reference list
- Analysis request form, field chain of custody
- Sample administration receipt and documentation log
- Internal chain of custody (if required)
- Method summary/reference
- Analysis reports/laboratory chronicles
- Case narrative and conformance/nonconformance summary
- Quality control summary; duplicate, matrix spike, matrix spike duplicate, blank, LCS, and surrogate recovery forms; GC/MS tuning summary and internal standard area summary; summaries for calibration and standardization
- Sample data; MDL summary form, all raw sample data including instrument printouts for GC, GC/MS, and TPH only (including calibration raw data)
- Quality control raw data; blank raw data for GC, GC/MS, and TPH only, preparation logs

## Type IV, Full CLP Deliverables

- Title page
- Sample reference list
- Case narrative
- · Analysis request form, field chain of custody
- Sample administration receipt and documentation log
- Internal chain of custody (if required)
- · All CLP reporting forms; QC analytical results and calibration summaries
- Sample data; all raw data including instrument printouts
- Standard Data; all raw initial and continuing calibrations and standardization data including instrument printouts
- Quality control raw data; all raw quality control sample data including printouts, preparation logs, run logs

Element A9 Revision No. 1 Date: 07/01/04 Page 6 of 6

# Table A9-2 – Continued Data Package Formats

## Type V, Reduced CLP Deliverables

- Title page
- Sample reference list
- Case narrative
- · Analysis request form, field chain of custody
- · Sample administration receipt and documentation log
- Internal chain of custody (if required)
- All CLP reporting forms; QC analytical results and calibration summaries
- Sample raw data; all raw sample data including instrument printouts for organics only
- Quality control raw data; blank raw data for organics only, preparation logs

## Type VI, Raw Data Only

- · Title page
- · Sample data; all raw sample data including instrument printouts
- · Quality control raw data; blank raw data, LCS raw data

# **GROUP B**

# **MEASUREMENT/DATA ACQUISITION**

Element B1 Revision No. 0 Date: 05/16/02 Page 1 of 1

## **B1. Sampling Process Design**

In order for meaningful analytical data to be produced, the samples analyzed must be representative of the system from which they are drawn. It is the responsibility of the client to ensure that the samples are collected according to accepted or standard sampling methods. The client should evaluate the number, location, and type of samples to be collected. The appropriate number and frequency of field QC samples should also be determined by the client.

For non-standard matrices such as fish, worms, biota, large concrete or wood chunks, or other assorted waste, a discussion should take place with the laboratory to identify special handling requirements and confirm method performance for the particular matrix.

Element B2 Revision No. 1 Date: 07/01/04 Page 1 of 4

## **B2. Sampling Methods**

The sampling methods should be selected by the client with regard to the intended application of the data.

The laboratory will provide the appropriate sample containers, required preservative, chain-of-custody forms, shipping containers, labels, and custody seals for the sampling. Trip blanks will be prepared by the laboratory and accompany sample containers at the project required frequency. Analyte free water will also be provided for field blanks. Temperature blanks will be included for monitoring cooler temperature upon receipt of the samples back at the laboratory. Pre-cleaned containers, with vendor supplied traceability documentation are available upon request. Because the laboratory does not stock this type of traceable container, 2 weeks prior notice is required.

Before use, each lot of preservative is documented and checked for contaminants. The appropriate bottle will be preserved with the new preservative and filled with deionized water to represent a sample. A similar container (that does not contain preservative) will be filled with deionized water to be used as a blank check. Analysis results are documented and reviewed for each preservative lot number.

A list of containers, preservatives, and holding times follows in Table B2-1.

Element B2 Revision No. 1 Date: 07/01/04 Page 2 of 4

Table B2-1
Sample Containers, Preservatives, and
Holding Times for Aqueous and Solid Samples

|                          |                      |                                                  |                                                         | Но                                               | olding Tim        | e <sup>d</sup> |
|--------------------------|----------------------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------|----------------|
|                          |                      | Container                                        | ł                                                       |                                                  | om Date           |                |
|                          | Vol. Req. (mL)       | P=Plastic                                        |                                                         | (                                                | Collection        |                |
| Fraction                 | Wt. Req. (g)         | G=Glass                                          | Preservation <sup>a</sup>                               | Wate                                             | er                | Soil           |
| Volatiles                | 3 × 40 mL            | G                                                | Cool, 4°Cb pH <2 w/ HCl                                 | 14                                               |                   | 14             |
|                          | 100 g '              |                                                  |                                                         |                                                  | Days              |                |
| Pesticides               | 2 × 1000 mL          | G                                                | Cool, 4°Cb                                              | 7                                                |                   | 14             |
|                          | 100 g                |                                                  |                                                         | Days                                             | to extrac         |                |
| Herbicides               | 2 × 1000 mL          | G                                                | Cool, 4°Cb                                              | 7                                                |                   | 14             |
|                          | 100 g                |                                                  |                                                         |                                                  | to extrac         |                |
| Halocarbons              | 3 × 40 mL            | G                                                | Cool, 4°Cb pH <2 w/ HClc                                | 14                                               | _                 | N/A            |
| (Volatiles by GC)        | N/A                  |                                                  |                                                         |                                                  | Days              |                |
| Aromatics/Petroleum      | 3 × 40 mL            | G                                                | Cool, 4°Cb pH <2 w/ HCl                                 | 14                                               | D                 | 14             |
| (Volatiles by GC)        | 100 g '              |                                                  |                                                         | <del>                                     </del> | Days              | 14             |
| Semivolatiles            | 2 × 1000 mL          | G                                                | Cool, 4°Cb                                              | Dave                                             | to outros         | • •            |
| (Acid/Base Neutrals)     | 100 g<br>2 × 1000 mL | G                                                | Cool, 4°C Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Days                                             | to extrac         | 14             |
| PAHs (HPLC)              | 100 g                | ٥                                                | C001, 4°C Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Davi                                             | s to extra        |                |
| Metals                   | 100 mL               | P,G                                              | HNO <sub>3</sub> to pH <2                               | 6 Bay                                            | S IO EXII BI      | 6              |
| IVIELAIS                 | 100 nL               | F,G                                              | 111103 to pit 12                                        | "                                                | Months            | U              |
|                          | 100 9                |                                                  |                                                         |                                                  | lg 28 Day         | /S             |
| Cyanide                  | 500 mL               | P.G                                              | Cool, 4°C NaOH to pH >12                                | 14                                               | ·3 ,              | 14             |
| 0,0,,,,,                 | 100 g                | 1                                                | ascorbic acid                                           |                                                  | Days              |                |
| Sulfide                  | 500 mL               | G                                                | Cool, 4°C (NaOH, ZnAC                                   | 7                                                |                   | 7              |
|                          | 100 g                |                                                  | Waters Only)                                            | 1                                                | Days              |                |
| Phenol                   | 1000 mL              | G                                                | Cool, 4°C H <sub>2</sub> SO <sub>4</sub> to pH <2       | 28                                               | ~                 | 28             |
|                          | 100 g                |                                                  |                                                         |                                                  | Days              |                |
| ТРН                      | 2 × 1000 mL          | G                                                | Cool, 4°C pH <2 w/ HCl                                  | 7                                                |                   | 14             |
|                          | 100 g                |                                                  |                                                         |                                                  | Days              |                |
| Hexane Extractable       | 2 × 1000 mL          | G                                                | Cool, 4°C pH <2 w/ HCl                                  | 28                                               |                   | 28             |
| Materials (HEM)          | 100 g                |                                                  |                                                         |                                                  | Days              |                |
| TPH-GRO                  | 3 × 40 mL            | G                                                | Cool, 4°C pH <2 w/ HCl                                  | 7                                                |                   | 14             |
|                          | 100 g                |                                                  |                                                         |                                                  | Days              |                |
| TPH-DRO                  | 2 × 1000 mL          | G                                                | Cool, 4°C pH <2 w/ HCi                                  | 14                                               |                   | .14            |
|                          | 200 g                |                                                  |                                                         |                                                  | s to extra        |                |
| TOX                      | 4 × 250 mL           | G                                                | Cool, 4°C H <sub>2</sub> SO <sub>4</sub> to pH <2       | 28                                               | Deve              | N/A            |
|                          | 50 g                 |                                                  | Na <sub>2</sub> SO <sub>3</sub>                         | <del> </del>                                     | Days              |                |
| TOC                      | 125 mL               | G                                                | Cool, 4°C H <sub>2</sub> SO <sub>4</sub> to pH <2       | 28                                               | Dave              | 28             |
| Talah Ministra (Alitana) | 20 g                 | <del>                                     </del> | 0-1 400 11 00 45 511 00                                 | 1                                                | Days              | NIZA           |
| Total Nitrite/Nitrate    | 120 mL               | P,G                                              | Cool, 4°C H₂SO₄ to pH <2                                | 28                                               | Deves             | N/A            |
|                          | 1                    | I                                                |                                                         | 1                                                | Days <sup>9</sup> |                |

Element B2 Revision No. 1 Date: 07/01/04 Page 3 of 4

apH Adjustment with acid/base is performed on water samples only.

CDue to the inaccurate recovery of 2-chloroethyl vinyl ether in the presence of HCl, Halocarbon samples analyzed for this compound should not be preserved.

dSamples will be analyzed as soon as possible after collection. The times listed are the maximum times that samples will be held before analysis and still be considered valid.

eAnalysis 40 days from extraction.

<sup>f</sup>This is for soils not sampled by Method 5035 and 5035A. For these methods, see below.

9Holding time is 48 hours from time of collection for unpreserved samples.

**NOTE:** For volatiles analysis, the container should be filled completely, with no headspace. All sample containers, preservatives, and mailers will be supplied at no additional charge upon request, except for the special containers with traceability documentation. There is an additional charge for this type of container.

## Soil Sampling for Volatile Organics by SW-846 5035 and 5035A

These are methods for collection and analysis of soils and solid waste samples for volatile organic compounds. Method 5035 is described in Update III to the Third Edition of SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, and is required for all analytical methods using purge and trap techniques (8021B, 8015B, and 8260B). Method 5035A is published by EPA on their website.

The volatile analysis is performed over two ranges:

|            | GC/MS (8260)  | GC (8021 or 8015B) |
|------------|---------------|--------------------|
| Low Level  | 5 – 300 μg/kg | Not Available      |
| High Level | >250 µg/kg    | >20 µg/kg          |

The different levels require different sampling techniques. The low-level method can only handle samples within a specific concentration range (these samples CANNOT be diluted); therefore, a high-level sample MUST be collected to ensure that all the target analytes can be quantified.

Naturally occurring carbonates in some soils may cause effervescence (foaming) on contact with the sodium bisulfate (NaHSO<sub>4</sub>) solution used as preservative for the low-level preparation. This interference makes it necessary for the laboratory to use the high-level prep or an alternative technique for low level.

bSodium thiosulfate needed for chlorinated water samples

Element B2 Revision No. 1 Date: 07/01/04 Page 4 of 4

Lancaster Laboratories supports the following options for the two levels:

|        | No. of Sample  Containers* Size (a) Holding Times |             |          |               |  |  |
|--------|---------------------------------------------------|-------------|----------|---------------|--|--|
|        | evel (LL) Options                                 | Containers* | Size (g) | Holding Time† |  |  |
| 1      | LL EnCore                                         | 2           | 5        | 48 hours      |  |  |
|        | HL EnCore                                         | 1           | 5        | 48 hours      |  |  |
| 2      | LL Field Preserved NaHSO <sub>4</sub>             | 2           | 5        | 14 days       |  |  |
|        | HL Field Preserved Methanol                       | 1           | 5        | 14 days       |  |  |
| 3      | LL Empty VOA Vial                                 | 2           | 5        | 48 hours      |  |  |
|        | HL Methanol VOA Vial                              | 1           | 5        | 14 days       |  |  |
| 4      | LL Empty VOA Vial                                 | 2           | 5        | 48 hours      |  |  |
|        | HL Empty VOA Vial                                 | 1           | 5        | 48 hours      |  |  |
| 5      | LL VOA Vial with Water                            | 2           | 5        | 48 hours      |  |  |
|        | HL Methanol VOA Vial                              | 1           | 5        | 14 days       |  |  |
|        |                                                   | No. of      | Sample   |               |  |  |
| High-l | _evel (HL) Options                                | Containers* | Size (g) | Holding Time† |  |  |
| 6      | Field Preserved Methanol                          | 1           | 10       | 14 days       |  |  |
| 7      | Field Preserved Methanol                          | 1           | 5        | 14 days       |  |  |
| 8      | HL Encore                                         | 1           | 5        | 48 hours      |  |  |
| 9      | HL Encore                                         | 1           | 25       | 48 hours      |  |  |

<sup>\*</sup>Additional containers will be needed for MS/MSD.

†Because of the need to preserve the samples within 48 hours of collection, it is imperative that samples be returned to the laboratory within one day of sample collection. Once preserved the holding time is 14 days from collection. Although not recommended, samples can be submitted in bulk containers. The holding time for these samples is 14 days from collection.

If samples are collected in EnCore or other approved core samplers, a small quantity of soil must be collected for a moisture determination and to determine if the soil effervesces with the addition of sodium bisulfate. If the soils do react, they will be frozen until analysis in place of chemical preservation.

Options 1, 2, 6, 7, 8, and 9 follow EPA 5035. Options 3, 4, and 5 follow EPA method 5035A.

Element B3 Revision No. 1 Date: 07/01/04

Page 1 of 25

## **B3. Sampling Handling and Custody Requirements**

Samples are unpacked and inspected in the sample receipt area. At this time, the samples are examined for breakage and agreement with the associated client paperwork. The cooler temperatures will be checked upon receipt and recorded. As the samples are unpacked, the sample label information will be compared to the chain-of-custody record and any discrepancies or missing information will be documented. If necessary, the cooler will be closed and placed in cold storage until instructions and resolution of any discrepancies are received from the client.

A member of our Sample Administration Group will act as sample custodian for the project. To ensure accountability of our results, a unique identification number is assigned to each sample as soon as possible after receipt at the laboratory. Upon entry into our LIMS and assignment of the seven digit sample number, labels are generated, along with an acknowledgement summarizing samples entered and the analyses scheduled. When samples requiring preservation by either acid or base are received at the laboratory, the pH will be measured and documented. with the exception of samples designated for volatile analysis, which are checked at the time of analysis. Samples requiring refrigeration will be stored at 2° to 4°C. The use of our computer system in tracking samples (by the Lancaster Labs sample number assignment) will control custody of the sample from receipt until the time of its disposal. The security system on our laboratory building allows us to designate the entire facility as a secure area since all exterior doors are either locked or attended. Therefore, hand-to-hand chain-of-custody is not part of our routine procedure, but is available upon request. If requested, hand-to-hand chain-of-custody will be provided as per attached LOM-SOP-ES-212, "Internal Chain-of-Custody Documentation." The laboratory chain-of-custody will begin with the preparation of bottles. The procedures for sample log-in, storage, and chainof-custody documentation are detailed in the EQPM (see sections 5.2 and 5.3 in Figure B3-2) and the QA standard operating procedures included in Element B3 (LOM-SOP-ES-220, "Sample Storage and Discard" and LOM-SOP-ES-212, "Internal Chain-of-Custody Documentation"). Examples of sample labels and a custody seal are shown in Figure B3-1.

Element B3 Revision No. 1 Date: 07/01/04 Page 2 of 25

# Figure B3-1

# Sample Label (Field)

| CLIENT           | प्रभावती विकास की प्रशास की स्थापन की स् | If you do not have an account with on,<br>reauts will not be released until payment in received. |               |  |
|------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------|--|
| SAMPLE DEMTRICA  | TICH / LOCATION                                                                                                | a                                                                                                | REB:          |  |
| COLLECTION DIFOR | MATION:                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                            | C COMPOSE     |  |
| DATE             | This SY:                                                                                                       |                                                                                                  | C Gross       |  |
| TESTING REQUIRED | · · · · · · · · · · · · · · · · · · ·                                                                          | PHESERO                                                                                          | ATIVE(S) ADDE |  |
| A lanca          | etor l'aboratorios                                                                                             | IL.                                                                                              |               |  |
| <b>A</b> Faire   | ster Laboratories                                                                                              |                                                                                                  |               |  |

# Sample Label (Laboratory)

# Outgoing on Cooler or Kit (blue)

| / I amendant aboutones                            |                                                                | DATE      |
|---------------------------------------------------|----------------------------------------------------------------|-----------|
| Lancaster Laboratories Where quality is a science | CUSTODY SEAL                                                   | SIGNATURE |
|                                                   | 2425 New Holland Pike, Lancasator, PA 17601-5994 (717) 656-230 | 10        |

Incoming on Cooler Containing Samples (yellow)



CUSTODY SEAL \$1 2425 New Holland Pike, Laureasatier, PA 17801-5994 (717) 658-2300

Element B3 Revision No. 1 Date: 07/01/04 Page 3 of 25

## Figure B3-2



**Environmental Quality Policy Manual** 

#### 5.2. Sample Receipt and Entry

Samples can be received at the laboratory 24 hours a day, 7 days a week, 365 days of the year. Receipt can occur in one of three ways:

- Lancaster Laboratories courier services (i.e., Transportation Department)
- Personal delivery
- Commercial courier

All samples received for testing are delivered to the Sample Administration Department immediately upon arrival. This group is responsible for the unpacking and organizing of the samples. This process includes checking custody seals if present, paperwork agreement, signing the chain of custody, recording cooler temperatures, documenting the condition of containers, accounting for all sample bottles, observing any safety hazards, and reporting any problems to Client Services for communication to the client. This receipt process is documented.

As soon as practical after sample receipt, all samples are entered into our computerized sample management system (CSMS). Samples awaiting log-in are stored in temporary holding areas, at appropriate storage conditions to maintain sample integrity. If there is doubt about suitability of items received or if items do not conform to the description provided or the testing required is not clear or specified, the client will be contacted and the conversation documented.

At the time of entry, the CSMS will assign a unique Lancaster Laboratories' identification number to each sample. Upon entry of pertinent client information and assignment of a unique sample number, a label will print identifying each container, which is attached to the sample container.

Samples are tracked to the minute upon arrival. This will allow the client to see exactly how long it took the samples to pass through receipt, unpacking, and entry.

A sample acknowledgement will print from the CSMS per sample delivery group (SDG). This notification is sent to the client to confirm sample receipt and entry on the day following sample log-in. Internally, appropriate personnel will audit all applicable sample entry and client paperwork.

#### 5.3. Sample Identification and Tracking

To ensure accountability of results, each sample is identified with a unique sequentially assigned number by the CSMS. In addition to the unique Lancaster Laboratories' sample number the following information will print on the label: client name, sample identification assigned by the client, sample collection information, storage area, bottle code ID, analyses requested, and any applicable notes to laboratory personnel.

This unique sample number is used to identify the sample in all laboratory data documentation, including notebooks, instrument printouts, and final reports. The sample number will also be used to identify additional containers of the sample that may be created during sample preparation and analysis (e.g., subsamples, extracts, digests).

Element B3 Revision No. 1 Date: 07/01/04 Page 4 of 25



LOM-SOP-ES-220.01 Supersedas Date: 08/15/02 Effective Date: NOV 1 2 2003 Page 1 of 6

# LABORATORY OPERATIONS MANUAL – ENVIRONMENTAL SCIENCES Sample Storage and Discard

#### **Table of Contents**

| Revision Log:                          | 3 |
|----------------------------------------|---|
| Reference:                             | 4 |
| Cross Reference:                       | 4 |
| Purpose:                               | 4 |
| Scope:                                 | 4 |
| Safety Precautions:                    |   |
| Personnel Training and Qualifications: |   |
| Procedure:                             | 4 |
| A. Sample storage and transfer         |   |
| B. Security of storage areas           |   |
| C. Sample discard                      | 5 |
| D. Storage conditions                  | 6 |

Element B3 Revision No. 1 Date: 07/01/04 Page 5 of 25



LOM-SOP-ES-220.01 Supersedes Date: 08/15/02 Effective Date: NOV 1 2 2003 Page 2 of 6

**Approvals** 

Prepared by: Houland Frank Keedy Date: 10/24/03
Serior Specialist

Approved by: Wichele W. Turue Date: 18/34/03

Approved by: Kathlan M doewen Date: 10/89/03

Element B3 Revision No. 1 Date: 07/01/04 Page 6 of 25



LOM-SOP-ES-220.01 Supersedes Data: 08/15/02 Effective Date: Page 3 of 6 NOV 1 2 2003

## **Revision Log:**

 Ver. #
 Effective Date
 Change

 00
 08/15/02
 Previous Issue - SOP-QA-103.04

 01
 NOV 1 2 2003
 Major changes are as follows:

 Updated to LOM-SOP format.

Separated out Pharmaceutical references.

LOMSOPES220\_01.DOC 102403





LOM-SOP-ES-220.01 Supersedes Date: 08/15/02 Effective Date: NOV 1 2 2003

#### Reference:

Chemical Hygiene Plan, Lancaster Laboratories, current version.

#### Cross Reference:

The following procedures are cross-referenced in this document:

| Document       | Document Title                                    |
|----------------|---------------------------------------------------|
| LOM-SOP-ES-212 | Internal Chain-of-Custody Documentation           |
| SOP-ES-001     | Forensic Laboratory Services                      |
| SOP-QA-109     | Laboratory Notebooks, Logbooks, and Documentation |

#### Purpose:

Sample integrity can be compromised by improper storage conditions. The objective of this procedure is to prevent sample deterioration and mix-up prior to analysis. The laboratory information management system (LIMS) is used to assign storage locations to assist in the orderly storage of samples. Systems are also in place to ensure organized retrieval of samples for analysis and discard/return to client at an appropriate date.

#### Scope:

This procedure applies to Lancaster Laboratories Environmental Business units. The content of this procedure will describe general systems that are in place for sample storage, retrieval, return, and discard. Additional procedures within Sample Support describe the specific storage operations and requirements. Forensic storage is described in SOP-ES-001.

#### **Safety Precautions:**

Refer to the corporate Chemical Hygiene Plan which provides safety information. Contact your supervisor if you have questions or concerns about a sample.

## Personnel Training and Qualifications:

Personnel who handle client samples must be familiar with the requirements of this procedure.

#### Procedure:

## A. Sample storage and transfer

- Sample Administration will gather information into the LIMS at the time of sample entry about the approximate size of samples to be received in a group and the type of storage they require (e.g., refrigerator, freezer, or room temperature).
- The LIMS will assign the storage location and record the length of time the samples must be retained after the analysis report has been issued.

Element B3 Revision No. 1 Date: 07/01/04 Page 8 of 25



LOM-SOP-ES-220.01 Supersedes Date: 08/15/02 Effective Date: NOV 1 2 2003 Page 5 of 6

- 3. Samples will be stored in the assigned storage location, when not in the laboratory area.
- 4. In the event that a sample location change is needed due to a temperature adjustment, a sample custodian or sample administrator will access the appropriate LIMS program and choose a new location. After a successful change in location has occurred, the new location will be written on each Lancaster Laboratories sample label, or a new label will be reprinted and adhered to the sample. The sample will then be transferred to the new storage location.
- Analysts requiring the use of a sample may determine its location by referring to a departmental sample status sheet, LIMS, or SA entry paperwork.
- To prevent unnecessary deterioration of the samples, the contents needed for analysis shall be removed and the sample returned to storage with a minimum of delay.

#### B. Security of storage areas

There are varying degrees of additional security requirements for storage areas, which are in addition to the building security. This additional security may be driven by various regulatory agencies or client requirements. The following are different levels of security which are in place at the laboratory.

- Samples are stored in a controlled access area and are tracked by an automated sample retrieval storage system (ASRS). Samples are barcoded in and out of this system to track retrieval, return, and disposal.
- 2. Forensic storage areas are locked and admission to these areas is permitted only to sample custodians. See SOP-ES-001 for further details on forensic storage. Most of the samples stored in these areas require chain-of-custody documentation as outlined in LOM-SOP-ES-212. Samples may not be removed from this area without signing a chain-of-custody form. A chain-of-custody record may also be kept for samples, at the request of the client, even if the samples are not for forensic purposes.

#### C. Sample discard

- When the retention time for sample storage has expired, a discard list will be generated from the LIMS. The retention dates are based upon client requirements or defaulted to a given number of days past the date when the final analysis report is generated, if no client requirement is given.
- These samples will be removed from their assigned storage area by a sample custodian or analyst, and either disposed of or returned to the client.
- Hazardous samples shall either be returned to clients, decontaminated, or disposed of by personnel trained in hazardous waste discard assessment or health and safety personnel.

Element B3 Revision No. 1 Date: 07/01/04 Page 9 of 25



LOM-SOP-ES-220.01 Supersedes Date: 08/15/02 Effective Date: NOV 1 2 2003 Page 6 of 6

#### D. Storage conditions

- The temperature of each sample storage location requiring a temperature control is continuously monitored by the Andover system or it is checked during each normal working day by an assigned person responsible for the sample storage area. This information shall be recorded. Temperature monitoring documentation shall be recorded in ink and changes shall be made in accordance with the error correction procedure outlined in SOP-QA-109.
- The following temperature ranges need to be maintained within storage units, unless otherwise specified.

|   | Refrigerator | Freezer       | Room        |
|---|--------------|---------------|-------------|
|   | Storage      | Storage       | Temperature |
| Γ | 2º to 4°C    | -10° to -20°C | NA          |

NOTE: Storage conditions of -40° ± 10°C and -80° ± 10°C are also available.

- 3. If the temperature recorded does not fall within these ranges, corrective action must be taken and documented as per policy.
- Temperature records must be reviewed by a second qualified person and this information must be permanently archived.
- In the event that additional storage areas are needed as "overflow" storage, systems
  must be put into place before samples can be stored. These areas must also be
  monitored for acceptable storage conditions.
- If a client requests storage conditions which are outside the temperature ranges defined above, arrangements will be made to accommodate the request, if possible.

Element B3 Revision No. 1 Date: 07/01/04 Page 10 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 1 of 16

# LABORATORY OPERATIONS MANUAL — ENVIROMENTAL SCIENCES SECTION Internal Chain-of-Custody Documentation

## **Table of Contents**

| Revisio | n Log:                           | .3 |
|---------|----------------------------------|----|
|         | Teference:                       |    |
|         | 8:                               |    |
|         |                                  |    |
|         | ons:                             |    |
|         | nel Training and Qualifications: |    |
|         | ure:                             |    |
|         | Intitial documentation           |    |
|         | Creating the internal COC        |    |
|         | -                                |    |
|         | Documentation of custody changes |    |
|         | Additional COC issues.           |    |
| E       | Completion of the grocess        | ٠, |

Element B3 Revision No. 1 Date: 07/01/04 Page 11 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: Page 2 of 16 FEB 2 0 2003

## Approvals

| Prepared by: | Dnoth M Aure<br>QA Senior Specialist/Coordinator | Date: 2/5/03                |
|--------------|--------------------------------------------------|-----------------------------|
|              | QA Senior Specialist/Coordinator                 |                             |
| Approved by: | Lathlen M. Joswin Quality Assurance Management   | Date: <u><b>2/5/0.3</b></u> |
| Approved by: | J. June Heigh                                    | Date: 2/6/63                |
| . 4-1        | Executive Management                             |                             |

Element B3 Revision No. 1 Date: 07/01/04 Page 12 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 3 of 16

## **Revision Log:**

**Effective Date** Ver.#

Change

Previous Issue: SOP-QA-104.05

01 FEB 2 0 2003 Major changes are as follows:

- Removed Pharmaceutical information Updated to LOM-SOP format Minor clarifications throughout

- Updated Figure 3 and 5

LOMSOPES112\_01.DOC 020403

Element B3 Revision No. 1 Date: 07/01/04 Page 13 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 4 of 16

#### Cross Reference:

The following procedures/forms are cross-referenced in this document:

| Document   | Document Title                                          |  |
|------------|---------------------------------------------------------|--|
| SOP-QA-102 | Sample Log-In                                           |  |
| SOP-QA-109 | Laboratory Notebooks, Logbooks and Documentation        |  |
| Form 2016  | Secure Storage Chain of Custody Original Sample         |  |
| Form 2102  | Analysis Request/Environmental Service Chain of Custody |  |
| Form 2174  | Sample Administration Receipt Documentation Log         |  |
| Form 2231  | Secure Storage Chain of Custody, Metals                 |  |
| Form 2365  | Master List of Chains of Custody                        |  |
| Form 2667  | Sample Storage, Off-Shift Entry Logbook                 |  |

#### Purpose:

In order to demonstrate reliability of data which may be used as evidence in a legal case, required by a regulatory agency, or required by a client, an accurate written record tracing the possession of samples must be maintained from the time they are received at the laboratory until the last requested analysis is verified. The purpose of a chain of custody (COC) is to ensure traceability of samples while they are in the possession of the laboratory.

#### Scope:

This procedure describes the initiating and maintaining of COC documentation for samples that require this level of traceability. It applies to the Environmental Division of Lancaster Laboratories when a client or regulatory agency requests an accurate written record tracing the possession of samples from the time they are received at the laboratory until the last requested analysis is verified. This procedure also applies to samples that may be used as evidence in a legal case.

#### Definitions:

A sample is in custody if it is in any one of the following states:

- 1. In actual physical possession
- 2. In view after being in physical possession.
- 3. Locked up so no one can tamper with it.
- 4. In a secured area, restricted to authorized personnel (e.g., in the ASRS).

Element B3 Revision No. 1 Date: 07/01/04 Page 14 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: Page 5 of 16 FEB 2 0 2003

## Personnel Training and Qualifications:

Training for this procedure consists of reading this SOP. Supervisory review of all COC documentation should be done until the trainer is satisfied that proficiency has been achieved. Training of all laboratory personnel is the responsibility of the group leader. Documentation that this training has been completed must be kept in the employee's training record.

#### Procedure:

#### A. Intitial documentation

- 1. Chain-of-custody documentation shall be kept upon the request of the client or for any samples that are known to be involved in a legal dispute. As with all analytical data, it is extremely important that this documentation is filled out completely and accurately with every sample transfer. Everyone who handles the COC is responsible to check for documentation compliance to the point of their acquisition. If changes need to be made to the form, they shall be made in accordance to the error correction procedure addressed in SOP-QA-109. It is the responsibility of the person who made an error in documentation to correct the error.
- 2. If requested by the client, the COC documentation will begin with the preparation of sampling containers. Form 2102 (Figure 1) will be initiated by the person packing the bottle order for shipment to the client. If the delivery of containers is via Lancaster Laboratories Transportation department, the driver shall sign the form when they relinquish the bottles to the client. Drivers must also sign COC forms when they pick up samples from a client for transportation to the laboratory.
- 3. When samples arrive at the laboratory for analysis, a member of the Sample Administration group will receive them and sign the external COC form that accompanies the samples, if provided. If the samples were picked up by our Transportation department, the driver must sign the COC to relinquish the samples to Sample Administration.
- 4. The Sample Administration group will track the custody of samples between receipt and entry into the CSMS on Form 2174 (Figure 2). The client's sample designation will be used for identification purposes until a unique Lancaster Laboratories number is assigned.
- Samples will be entered into the Sample Management System as described in SOP-QA-102. Sample Administration will enter an analysis number for "Laboratory Chain of Custody" if requested. A lab note will print to inform analysis of the need for COC documentation. This note will also be automatically added to the sample labels.



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003

#### B. Creating the internal COC

- 1. Sample Administration personnel shall initiate an internal Laboratory Chain of Custody Form 2016 (Figure 3) at the time of sample entry for each type of container in the sample group. Form 2365 will be initiated for each sample group at the time of entry (Figure 4). The samples will then be relinquished to a sample custodian who will store the samples in an assigned secure location. This change of custody from sample entry to storage shall be documented on the chain, as well as any interim exchanges for rush analysis, preservation, homogenization, or temporary storage in the SA HOLD. The internal COC forms will then accompany the samples from storage to the laboratory for analysis.
- If samples need to be checked out from the Sample Administration group, for rush or short hold time analyses, before Lancaster Laboratories numbers have been assigned to them, SA is responsible for starting a COC form. They will note the available header information, the samples being relinquished (documented by the client sample designation), and the reason for transfer.
- After sample entry, the original copy of the external client COC/analysis request form will be filed with Accounts Receivable, to be returned to the client with their invoice. Other copies of the external form will stay within SA to be filed within the client's paperwork file.

#### C. Documentation of custody changes

 An example of how to document changes in sample custody is shown in Figures 3 and 5. Each change of sample custody must be accurately documented in a consistent format. All signatures documenting changes of custody will use the following format:

Signatures: First initial, full last name, employee number

Date: Month/day/year

Time: Documented as military time

Ink: Black ink is preferred, red ink and pencil are not acceptable

a. When Sample Support releases samples to an analyst they must:

Note the sample number(s) released and sign the "Released By" column of the chain.

b. When an analyst receives samples from Sample Support they must:

Sign the "Received By" column, note the date and time samples are received, and note the reason why they are taking the samples (reason for change of custody).

c. When an analyst returns samples to Sample Support they must:

Element B3 Revision No. 1 Date: 07/01/04 Page 16 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 7 of 16

Note all sample numbers being returned, sign the Released By column, and note time and date of return.

- d. When Sample Support receives samples from an analyst they must:
   Sign the Received By column and note the reason for sample transfer.
- 2. Sample handling should be kept to a minimum. Analysts requiring use of a sample will requisition it through the computer requisition program. During the hours when Sample Support is staffed by sample custodians, a custodian will receive the computerized requisition and remove the sample from storage. The custodian will ensure that the bottle type listed on the COC form matches the bottle type being distributed. It is the shared responsibility of the analyst and sample custodian to ensure that forms are signed, dated, and that the reason for sample transfer are recorded with each change of custody, as directed by Item (3) a. above.
- Each specific test that an analyst performed in conjunction with the associated sample number(s) must be accurately documented by the analyst before the samples are returned to a sample custodian in the sample storage area.
- When an analyst requires the use of samples when a sample custodian is not on duty, they must requisition samples earlier in the day or on the previous day. These samples and associated COCs will be pulled by a sample custodian and placed in the locked Main Storage area. The sample custodian will note on the COC the change in transfer to the Main Storage in addition to the time, date, and the sample numbers. When an analyst picks up the sample from Main Storage, they will need to contact the security person on duty to unlock the Main Storage unit. The analyst will need to fill out Form 2667 (Figure 6) which will be located by the entrance to the Main Storage unit to document entry into the storage unit (security will co-sign as a witness). Once the notebook is signed, the analyst may enter and retrieve their samples. The analyst picking up the samples will document the specific samples being checked out. The security person will sign in the Released By column. The analyst will sign the Received By column, note the time, date, and reason for transfer. When the analyst returns the samples to the Main Storage, security must be contacted. The logbook must be signed by the analyst and security, the analyst must sign the Released By column, and security must sign the Received By column indicating the time, date, and reason for transfer (e.g., Main Storage).
- 5. The following changes of custody will be handled as noted below:
  - Documentation is required for all shift changes. Signatures involving transfers from one shift to another shall be the responsibility of the analyst who originally acquired the samples from Sample Support.
  - Occasionally, a sample container will be needed for analysis by an analyst in a
    department while it is in the custody of an analyst in another department. It will
    be the responsibility of the first person who received the sample to note on the
    COC the specific sample numbers requested by the second person and to sign

Element B3 Revision No. 1 Date: 07/01/04 Page 17 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 8 of 16

the Released By column. The second person will sign the Received By column and note the time, date, and reason for sample transfer. After the second person is finished with the sample, the sample will be returned back to the first person or to the Sample Storage area.

- c. In situations where a sample group must be split between departments working on different analyses, a supplemental COC must be initiated by the Sample Support Group. The supplemental chain will be used to accompany that portion of the sample group that is needed by a second department, when another department has part of the sample group and the COC for the entire group. This supplemental COC will be created only when absolutely necessary to minimize paperwork and confusion. This chain must also be documented on the master list of chains initiated for the sample group.
- d. If COC samples are stored in other areas of the laboratory or in a specific department, they must be stored in a secured area. When samples are taken from a departmental storage area, the Released By column of the COC is documented as "department XX storage." If samples are returned to this area when complete, the Received By column will be noted as department XX storage.

## D. Additional COC issues

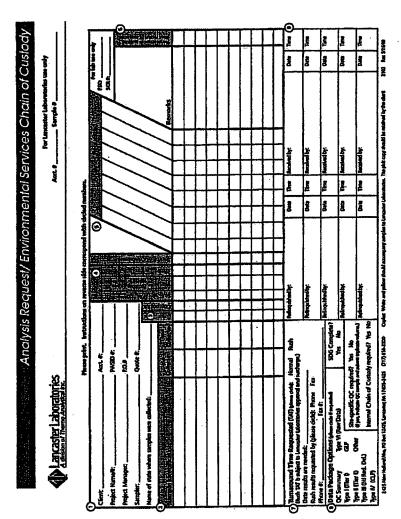
- Analysts in possession of samples shall remove the aliquot required for their analysis
  and return the samples to the Sample Support Group with a minimum of delay.
  During this time of possession, samples must fall under the definition of sample
  custody.
- 2. If additional containers of the sample are created (e.g., subsamples, extracts, distillates, leachates, digests, etc.), then additional COC form must be created by the department if they do not document this information on the original COC form. This form will be marked with the container type and will be initiated to accompany the new sample container. Each department in the lab has specifically designed COC forms that will be used if new containers are created, (see Figure 5 for an example). All changes of custody involving handling of new containers in the department (e.g., analysis, storage, vials on instruments, etc.) will be documented on the departmental specific COC form or on the original COC form. Any specific handling or documentation requirements for departmental chains can be described in a departmental SOP.

Element B3 Revision No. 1 Date: 07/01/04 Page 18 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 9 of 16

## E. Completion of the process


- 1. After sample analysis, samples shall be returned to the Sample Support Group as soon as possible. Original COC forms shall also be returned with the samples and this change of custody noted. At this time, it is the responsibility of the Sample Support Group to review the COC forms to ensure that all documentation on the forms is complete before they file the forms in their area. Sample custodians will not return a sample to its assigned storage location without signing the accompanying chain and performing this completeness check. All chains should either end with a note of "All Sample Consumed," "Discard," or "Storage" for the final reason of transfer.
- 2. All completed COC forms for the original sample containers will be retained in files within Sample Support. The Data Deliverables Group will retrieve these forms so a copy can be included in the data package. (NOTE: For those employees who collect COC forms for data packages; if you find a completed COC form in your area that does not get a data package, please send that COC form to the project manager for that account. The project manager will determine whether copies of the COCs get sent to the client with the reports or whether the originals will be archived at Lancaster Laboratories. The project manager will then forward the original COC forms to the Data Deliverables Department for archiving). All departmental created COC forms are collected by the department's data package group so that a copy can be included in the data package. These forms will not be returned to the Sample Support Group since these sample containers will not be returned to the Sample Support Group. The original copy of all COC forms will be retained on file by the laboratory.
- All personnel who handle sample containers shall make every attempt to ensure that all changes of custody are accurately and completely documented. Disciplinary action may be taken for employees who fail to comply with these important requirements.
- 4. In the event that a signature or other information is inadvertently not recorded on a COC form, then Sample Support, Data Package Groups, in conjunction with the technical groups, shall determine what information is missing. This can be performed by checking computer requisition records, raw data, or the Sample Support work schedule. The responsible party shall add the missing information or make the necessary correction at the bottom of the COC form, in addition to noting the situation that caused the error in documentation. The person making this note needs to sign and date the information using the current date. Any errors in COC documentation that cause noncompliances must be noted in the case narrative of the sample data package. Examples of specific cases are on file in the Data Package Department.

Element B3 Revision No. 1 Date: 07/01/04 Page 19 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 10 of 16

Figure 1



Element B3 Revision No. 1 Date: 07/01/04 Page 20 of 25



DIRECTIONS FOR COMPLETING THIS FORM

LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 11 of 16

## Figure 1 – Continued

| Cleat: You company's name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (5) Analyses Requested: Write the name of each analysis (or an abbroviation                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acct. 8: Your account number with Lanceter Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of it) here, and use the ratialog number that appears at the beginning of<br>each fine in the School de of Schools Be are to indicate which analyze as                                                                                                                                    |
| Project Hamel 9: The way your company refers to the work involved with these samples. You may want to include project builtion as part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to be performed on which samples.                                                                                                                                                                                                                                                         |
| of the description.<br>PRACES: Best did Witnes Searce 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (6) Remarks: List special transcrious about the sample here (e.g.,)                                                                                                                                                                                                                       |
| Project Manager. The person at your company responsible for overseeing the smicel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | be used (if meeting) for Bring additional analysis.                                                                                                                                                                                                                                       |
| EQ.4: Your company's purchase order member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (7) Turnsmand Time Requested: Circle Normal II you want routine TAL                                                                                                                                                                                                                       |
| Samples: The name of the person who collected the samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | where it takes when to 15 days, a year mood your results takes, can always to schedule heart, want.                                                                                                                                                                                       |
| Quota 4: The arienna number 6x1 appears on your quota (fi Lancaster Laboratories gave you a number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rush Results Requested by. Onde Fax or Phone and Include the                                                                                                                                                                                                                              |
| State where sample was collected: Please indicate where the sample use taken are to fit air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | number                                                                                                                                                                                                                                                                                    |
| Comments Manufall and comments and comments of the control of the | (3) Data Padage Cplices: Call our Clent Services Group (717-696-1304) if you'then questions about these choices.                                                                                                                                                                          |
| appear on the studytest report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDG Complete? Indicate Yeaff this is a complete sample definery group or                                                                                                                                                                                                                  |
| Data Collectori/Time Collectod: When the sample, was collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No if you will be submitting additional samples to be included in the same data package.                                                                                                                                                                                                  |
| ) Grate Churk hear I sample was taken at one time from a simple spot.<br>Composite Churk hear II samples were taken from more than one spot,<br>or periodically, and combined to make one sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Motor: We need to have one quality control (QC) sample for every 20 samples you sand, if you an exquesting the specialist QC. Please give us this sample is to typicate volume and identify it by writing "QC" in the Remarks obtain is                                                   |
| O Mather Check the type of sample you are submitting, if it is a water sample, please infeates if it is a potable water or if it is an NPUES sample. Number of Containers indicate the typial number of containers for each sample or containers for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The hiterail d-shi of castody is a hand-to-hand documentation recording a sample's momental throughout the contrary. We naturally start a dush of castody for dista patcage samples unless we are tall otherwise. There is a 125 per sample draype for the chah-of-castody documentation. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3) Rethroubshed by/Received by: The form exist be stoned each time the                                                                                                                                                                                                                   |

Thank you for using Lancater Laboratories. 2d our Clean Services Group (? 17-656-2300) II you have any aussilare about completing this form.

Element B3 Revision No. 1 Date: 07/01/04 Page 21 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: Page 12 of 16 FEB 2 0 2003

## Figure 2

| Lancaster Laudratories                         |                           |                             |                             |
|------------------------------------------------|---------------------------|-----------------------------|-----------------------------|
| •                                              | Sample Ad<br>Receipt Docu | ministration<br>mentation ! |                             |
|                                                | Vergibt pord              |                             |                             |
| Cilent/Project:                                | <del></del>               | Shipping Co                 | ntainer Sexisd: Y / N       |
| Date of Receipt:                               | <del></del>               | COC Seal Pr                 | esent: Y / N                |
| lime of Receipt:                               |                           | COC Seal in                 | inet: Y / N                 |
| Source Code:                                   |                           | Package: Cl                 | hilled / Not Chilled        |
|                                                |                           | Uppacker En                 | np. No.:                    |
|                                                | Temperature of S          | hipping Contains            | 178                         |
| \$1                                            |                           | <u></u>                     | <b>\$</b> 22                |
| Thermometer ID:                                |                           | Thermometer                 | ID:                         |
| Temp.:                                         |                           | Temp.:                      | <u></u>                     |
| Temp. Bottle / Surface Tem                     |                           | Temp. Bottle                | / Surface Temp.             |
| Wet Ice / Dry Ice / Ice Pa                     | icks .                    |                             | y Ice / Ice Packs           |
| Ice Present? Y / N                             | Loose / Bagged            | Ice Present?                | Y / N Loose / Baggod        |
|                                                |                           |                             | 64                          |
| Thermometer ID:                                |                           | Thermometer                 | 1D:                         |
| Temp.:                                         |                           | Temp.:                      |                             |
| Temp. Bottle / Surface Ter                     |                           | Temp. Bottle                | / Surface Temp.             |
| Wet ice / Dry Ice / Ice Pa                     | cks                       |                             | y Ice / Ice Packs           |
| Ice Present? Y / N                             | Loose / Bagged            | Ice Present?                | Y / N Logse / Bagged        |
| toa Present? Y / N<br>Paperwork Discrepancy/Un |                           |                             | Y/N Loose/Bagg              |
|                                                | Sample Administration     |                             |                             |
| Name                                           | Date                      | Time                        | Reason for Transfer         |
|                                                |                           |                             | Unpacking                   |
|                                                |                           |                             | Place in Storage or Entry   |
|                                                |                           |                             | Remove from Storage         |
|                                                |                           |                             | Con to Odinaria and Profess |

2174 Ray. 06/03/99

Element B3 Revision No. 1 Date: 07/01/04 Page 22 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: Page 13 of 16 FEB 2 0 2003

## Figure 3

# Lancaster Laboratories

## Secure Storage Chain of Custody Original Sample

| Client/Project: <u>AR</u>             | C Cor             | oora bor                              | 2                   |          |                                    |                                   |
|---------------------------------------|-------------------|---------------------------------------|---------------------|----------|------------------------------------|-----------------------------------|
| Preservative:                         | ne                | Ma                                    | trix:               | <u> </u> | sdg: _ <i>At</i> k                 | 201                               |
| Sample # Range of E                   | nlry Group:       | 153तर                                 | <u> 567-70</u>      |          | Bottle Type:                       | <u> </u>                          |
| · · · · · · · · · · · · · · · · · · · |                   | · · · · · · · · · · · · · · · · · · · | بخضيضه              |          |                                    | Dist., Extr.,                     |
| Sample Number(s)<br>In Custody        | Released<br>By    | Received<br>By                        | Date of<br>Transfer | Time of  | Reason for<br>Change of<br>Custody | or Digest<br>Chain<br>Created (X) |
| 1234547, 69                           | /20               | 740                                   | ,-,                 | AE30     | BOD analyin                        |                                   |
| 1234527.69                            | 711. Edmid<br>450 | I Keepid<br>133                       | 2/3/03              | 1015     | storage                            | ж                                 |
|                                       |                   |                                       |                     |          |                                    | <u> </u>                          |
|                                       |                   |                                       |                     |          |                                    |                                   |
|                                       |                   |                                       |                     | <u> </u> |                                    |                                   |
|                                       |                   | ,                                     |                     |          |                                    |                                   |
|                                       |                   |                                       |                     |          |                                    |                                   |
|                                       | ,                 |                                       |                     |          |                                    |                                   |
|                                       |                   |                                       |                     |          |                                    | <u> </u>                          |
|                                       |                   |                                       |                     |          |                                    |                                   |
|                                       |                   |                                       |                     |          |                                    | Τ                                 |
| <u></u>                               |                   |                                       |                     |          |                                    |                                   |
| <del></del>                           |                   |                                       |                     |          |                                    | Τ                                 |
|                                       |                   |                                       |                     |          |                                    |                                   |
| A-                                    |                   |                                       |                     |          |                                    |                                   |
|                                       |                   |                                       |                     |          |                                    |                                   |
|                                       |                   |                                       |                     |          |                                    | T                                 |

2018.01

Element B3 Revision No. 1 Date: 07/01/04 Page 23 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: Page 14 of 16 FEB 2 0 2003

## Figure 4

| /Project:                               |                                                        |              |
|-----------------------------------------|--------------------------------------------------------|--------------|
| b # Range of Entry Group:               |                                                        |              |
| Matrix:                                 | : Uquid Solid Mixed Oth                                | er           |
|                                         | Semple Chéma de la |              |
| Battle Type                             | Started By                                             | Date Starte  |
|                                         |                                                        |              |
|                                         |                                                        |              |
|                                         |                                                        |              |
|                                         |                                                        | <u> </u>     |
|                                         |                                                        | <b>-</b>     |
|                                         |                                                        |              |
|                                         |                                                        | <u> </u>     |
|                                         |                                                        | <del> </del> |
|                                         |                                                        | <del> </del> |
|                                         |                                                        | <del> </del> |
| <u> </u>                                |                                                        |              |
| 1-30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 | ation with light services                              |              |
| Battle Type                             | Storted By                                             | Date Starter |
|                                         |                                                        |              |
|                                         |                                                        |              |
|                                         |                                                        |              |
|                                         | perform Clatillates detc.                              |              |
| Botde Type                              | Started By                                             | Date Starte  |
|                                         | . I.                                                   | 1            |

2365 10/19/95

Element B3 Revision No. 1 Date: 07/01/04 Page 24 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 15 of 16

## Figure 5

## Secure Storage Chain of Custody Metals

| Client/Project: _ABC_C         | orporation                                       |                                         |                     |                     | <del></del>                     |
|--------------------------------|--------------------------------------------------|-----------------------------------------|---------------------|---------------------|---------------------------------|
| Sample #: _/234568             | 70                                               |                                         | s                   | DG: <u>A</u> A      | CØ/                             |
| Digest Type (circle one): H    | _                                                | F Hydrides                              | T                   | rial No:            | (if not 1, fill in)             |
| _                              | 0 2 3 4                                          | 5 5                                     | 7 1 3               | 0                   | 01                              |
| Sample Number(s) in<br>Custody | Released By                                      | Received By                             | Date of<br>Transfer | Time of<br>Transfer | Reason for Change<br>of Custody |
| 1234568,70                     | J. Tecapup                                       | الم | chhe                | 14/30               | digest storage                  |
| 123456,70                      | dept 22<br>Marge                                 | Bk. Here 10-19                          | ELME                | 1600                | analysis                        |
| 1234568.70                     | B.K. Herr Jourg                                  | g. Went lake                            | 2/4/23              | 1700                | shift change                    |
| /234568,70                     | g. week                                          | dept 22                                 | 3/4/63              | 2300                | storage                         |
| 1234528.70                     | digl 22                                          | K. dian                                 | 2/15/03             | 1100                | digust disposal                 |
| 1434301, 10                    | - precaye                                        |                                         |                     |                     |                                 |
| -                              |                                                  |                                         |                     |                     |                                 |
|                                |                                                  |                                         |                     |                     |                                 |
|                                |                                                  |                                         |                     |                     |                                 |
|                                | <del>                                     </del> |                                         |                     |                     |                                 |
|                                | <del>                                     </del> |                                         |                     |                     |                                 |
|                                |                                                  |                                         |                     |                     |                                 |
|                                |                                                  |                                         |                     |                     |                                 |
|                                | -                                                | 1                                       | <b>†</b>            |                     |                                 |
|                                |                                                  |                                         |                     |                     |                                 |

2231 Ray. 04/15/99

Element B3 Revision No. 1 Date: 07/01/04 Page 25 of 25



LOM-SOP-ES-212.01 Supersedes Date: None Effective Date: FEB 2 0 2003 Page 16 of 16

Figure 6

| (earntpaudics) DTO 01 | 154 t | Rate and American State of the Control of the Contr | ļ          | Off-Sh     | Sample Storage Off-Shift Entry Logbook | Sample Not av Bendellin           |   |
|-----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------------------------------------|-----------------------------------|---|
|                       | -     | Person Requesting Entry<br>(Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>8</b> c | <b>2</b> ₹ | Security<br>(Signature)                | Sample Nos. of Medustion<br>Taken |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | •                                      |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·          |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |            |                                        |                                   | _ |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       | Ŀ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   | _ |
|                       | L     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |
|                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                        |                                   |   |

Element B4 Revision No. 2 Date: 07/01/04 Page 1 of 43

### **B4.** Analytical Methods Requirements

The analytical procedures to be used for organics and inorganics are those described in the *USEPA SW-846 3rd Edition, Update III, 1996,* and *Methods for the Chemical Analysis of Waters and Wastes, USEPA, 600/4-79-020* for the preparation and analysis of water, sediment, and soil for the client specified compounds. Copies of the analytical procedures are located in the laboratory and available for use by analysts. Copies of analytical methods are available upon request. Quantitation and detection limits for the following methods are noted in Tables B4-2 through B4-25. These are evaluated annually and are subject to change, as per the guidelines given in 40 CFR Part 136 Appendix B.

#### **Inorganic Analysis**

Metals by Inductively Coupled Plasma (ICP) – This is a technique for the simultaneous determination of elements in solution after acid digestion. The basis of the method is the measurement of atomic emission by an optical spectroscopic technique. Characteristic atomic line emission spectra are produced by excitation of the sample in a radio frequency inductively coupled plasma. Method 6010B, See Table B4-1 for list of elements and prep methods.

Metals by Graphite Furnace Atomic Absorption (GFAA) – This is a method of analysis designed to detect trace amounts of the analyte through electrothermal atomization. Samples are digested before analysis. The graphite furnace AA spectrophotometer heats the sample within a graphite tube using an electrical current (i.e. flameless furnace) and measures the absorption of specific metallic elements at discrete wavelengths. Methods listed in Table B4-1.

Mercury by Cold Vapor Atomic Absorption – Organic mercury compounds are oxidized and the mercury is reduced to the elemental state and aerated from solution in a closed system. The mercury vapor passes through a cell positioned in the light path of a spectrophotometer and absorbance (peak height) is measured. Method 7470A/7471A.

Element B4 Revision No. 2 Date: 07/01/04 Page 2 of 43

Metals by Inductively Coupled Plasma Mass Spectrometer (ICP/MS) — This is a technique for the simultaneous determination of elements in solution after acid digestion. The method involves the breakdown of molecules into elemental ions in a plasma followed by a mass spectrometric measurement. Characteristic mass spectra are produced by the element's natural isotopes. Method 6020. See Table B4-1 for list of elements and prep methods.

#### **Micellaneous Wet Chemistry**

Moisture – A known sample weight is placed in a drying oven maintained at 103° to 105°C for 8 to 24 hours. The sample is reweighed after drying and this value is divided by the original weight. The result is used to calculate analytical concentration on a dry-weight basis. Method 160.3 (modified).

Cyanide, total – Distillation of the sample releases the cyanide from cyanide complexes as HCN. The liberated HCN and simple cyanides are converted to cyanogen chloride by reaction with chloramine T. This reacts with pyridine and barbituric acid reagent to give a red colored complex. The absorbance is read at 570 nm and is compared to a standard curve using an automated spectrophotometer. Method 9012A.

<u>Phenolics, total</u> – This method is based on automated distillation of phenol and the subsequent reaction with 4-aminoantipyrine in basic buffer to produce a red colored complex. The absorbance is read at 505 nm and is compared to a standard curve using an autotomated spectrophotometer. Method 9066.

<u>Sulfide, total</u> – The sample is acidified and a known excess of iodine is added. The iodine reacts with sulfide in acid solution, oxidizing sulfide to sulfur. The excess iodine is back-titrated with sodium thiosulfate. Method 9034 (modified).

<u>Total Petroleum Hydrocarbons</u> – Samples are extracted with freon and the resulting solution is treated with silica gel to remove fatty acids and other polar compounds. The remaining nonpolar compounds are designated as petroleum hydrocarbons and are quantitatively measured using Fourier Transform Infrared Spectroscopy (FTIR), Method 418.1 (modified for soils).

Element B4 Revision No. 2 Date: 07/01/04 Page 3 of 43

Hexane Extractable Materials (HEM) – For HEM a one liter sample is serially extracted with *n*-hexane in a separatory funnel. The solvent is evaporated from the extract, and the residual HEM is weighed. For SGT-HEM a one liter sample is serially extracted with *n*-hexane in a separatory funnel. The extract is mixed with silica gel, filtered through sodium sulfate, the solvent evaporated from the extract, and the residual SGT-HEM is weighed. Method 1664A.

Total Organic Carbon (TOC) – Following acidification, the sample is purged with nitrogen to remove inorganic carbon. Persulfate is injected to oxidize organic carbon to carbon dioxide which is detected by IR. Method 9060.

Total Organic Halogen (TOX) – Organic halogen is adsorbed onto an activated carbon column and combusted in an oxygen furnace. The resulting hydrogen halide gases are collected in an acetic acid buffer. The halides are titrated microcoulometrically through the generation of Ag+ ions. Method 9020B.

<u>Total Nitrite/Nitrate</u> – Using an autoanalyzer, the sample is passed through a column containing granulated copper-cadmium to reduce nitrate to nitrite. The nitrite ion reacts with sulfanilamide to yield a diazo compound which couples with *n*-1-naphylethylenediamine dihydrochloride to form a soluble, highly colored dye. The absorbance is read at 520 nm and compared to a standard curve. Method 353.2.

#### **Organic Analysis**

<u>Volatiles by GC/MS</u> – This method determines the concentration of volatile (purgeable) organics. The analysis is based on purging the volatiles onto a Tenax/silica gel trap, desorbing the volatiles onto a gas chromatographic column which separates them and identifying the separated components with a mass spectrometer. Method 8260B/5030B/5035.

<u>Semivolatiles by GC/MS</u> – This method determines the concentration of semivolatile organic compounds that are separated into an organic solvent and are amenable to gas chromatography. The method involves solvent extraction of the sample to isolate analytes and GC/MS analysis to determine semivolatile compounds present in the sample. Method 8270C/3550B/3510C.

Element B4 Revision No. 2 Date: 07/01/04 Page 4 of 43

<u>Volatiles by GC</u> – This method determines the concentration of volatile (purgeable) organic compounds. The analysis is based on purging the volatiles from the sample onto an appropriate sorbent trap and desorbing the volatiles onto a gas chromatographic column. Using an appropriate temperature program, the compounds are separated by the column and both qualitative and quantitative detection is achieved with a photoionization and/or electrolytic conductivity detector. Method 8021B/5030B/5035. Non-halogenated organics are analyzed by flame ionization detectors. Method 8015B/5030B/5035.

<u>TPH-GRO</u> – This method determines the concentration of gasoline range organics (2-methylpentane to 1,2,4-trimethylbenzene). The analysis is based on purging the volatiles from the sample onto an appropriate sorbent trap and desorbing the volatiles onto a gas chromatographic column. Using an appropriate temperature program, the compounds are separated by the column and both qualitative and quantitative detection is achieved with a flame ionization detector. BTEX may be determined simultaneously on systems equipped with a photoionization detector in tandem with the FID. Method 8015B/5030B/5035.

<u>TPH-DRO</u> – This method determines the concentration of diesel range organics (C-10 to C-28 hydrocarbons). The procedure includes solvent extraction of the sample and analysis of the extract on a gas chromatograph/flame ionization detector (GC/FID) using a megabore capillary column. Method API "Method for Determination of Diesel Range Organics," Revision 2, 02/05/95; or California Department of Health Services LUFT Task Force TPH Analysis-Diesel Method, 10/18/89, Method 8015B/5030B/5035.

Element B4 Revision No. 2 Date: 07/01/04 Page 5 of 43

Pesticides, PCBs, and Herbicides – These methods determine the concentration of organochloride pesticides, polychlorinated biphenyls, herbicides, and organophosphate pesticides. The procedures include solvent extraction of the sample, analysis of the extract on a gas chromatograph/electron capture detector (GC/EC) using a capillary column, and confirmation on a GC/EC using a second capillary column. A nitrogen-phosphorus detector is used for organophosphates. If the compound concentration is sufficient, confirmation may be performed on GC/MS upon request. Pesticides methods 8081A/3550B/3510C and 8141A/3550B/3510C. PCBs Method 8082/3550B/3510C. Herbicides Method 8151A/3550B.

<u>PAHs by HPLC</u> – The sample aliquot is extracted with methylene chloride. The extract is filtered (soils), dried, concentrated by evaporation and exchanged into acetonitrile. The extract is analyzed by reverse-phase HPLC with both UV and fluorescence detectors. Methods 8310/3550B/3510C.

Element B4 Revision No. 2 Date: 07/01/04 Page 6 of 43

Table B4-1
Inorganic Analytical Method Numbers

|            | ICP                    | GFAA              | ICP/MS             |
|------------|------------------------|-------------------|--------------------|
| Aluminum   | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Antimony   | 6010B/3005A/3010/3050B | 7041/3005A/3050B  | 6020/3010MOD/3050B |
| Arsenic    | 6010B/3005A/3010/3050B | 7060A             | 6020/3010MOD/3050B |
| Barium     | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Beryllium  | 6010B/3005A/3010/3050B | 7091/3020A/3050B  | 6020/3010MOD/3050B |
| Cadmium    | 6010B/3005A/3010/3050B | 7131A/3020A/3050B | 6020/3010MOD/3050B |
| Calcium    | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Chromium   | 6010B/3005A/3010/3050B | 7191/3020A/3050B  | 6020/3010MOD/3050B |
| Cobalt     | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Copper     | 6010B/3005A/3010/3050B | 7211/3020A/3050B  | 6020/3010MOD/3050B |
| Iron       | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Lead       | 6010B/3005A/3010/3050B | 7421/3020A/3050B  | 6020/3010MOD/3050B |
| Magnesium  | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Manganese  | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Molybdenum | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Nickel     | 6010B/3005A/3010/3050B | 7521/3020A/3050B  | 6020/3010MOD/3050B |
| Potassium  | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Selenium   | 6010B/3005A/3010/3050B | 7740              | 6020/3010MOD/3050B |
| Silver     | 6010B/3005A/3010/3050B | 7761/3020A/3050B  | 6020/3010MOD/3050B |
| Sodium     | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Thallium   | 6010B/3005A/3010/3050B | 7841/3020A/3050B  | 6020/3010MOD/3050B |
| Tin        | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Vanadium   | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |
| Zinc       | 6010B/3005A/3010/3050B |                   | 6020/3010MOD/3050B |

The number of parameters analyzed and the method used will be determined by the site-specific requirements.

Mercury by Cold Vapor - 7470A/7471A.

Element B4 Revision No. 2 Date: 07/01/04 Page 7 of 43

# **Table B4-2**Metals Compound List (TAL)

|                        | Wa          | ters       | Soi          | ls**        |
|------------------------|-------------|------------|--------------|-------------|
| Analyte                | LOQ* (mg/L) | MDL (mg/L) | LOQ* (mg/kg) | MDL (mg/kg) |
| Aluminum               | 0.2         | 0.041      | 20           | 2.96        |
| Antimony <sup>1</sup>  | 0.02        | 0.0085     | 2.           | 0.66        |
| Arsenic <sup>1</sup>   | 0.01        | 0.0049     | 1,           | 0.5         |
| Barium <sup>1</sup>    | 0.005       | 0.00042    | 0.5          | 0.032       |
| Beryllium <sup>1</sup> | 0.005       | 0.00034    | 0.5          | 0.059       |
| Cadmium <sup>1</sup>   | 0.005       | 0.00087    | 0.5          | 0.054       |
| Calcium                | 0.2         | 0.049      | 20           | 1.25        |
| Chromium¹              | 0.005       | 0.0022     | 0.5          | 0.2         |
| Cobalt1                | 0.005       | 0.0016     | 0.5          | 0.14        |
| Copper <sup>1</sup>    | 0.01        | 0.0021     | 1.           | 0.19        |
| Iron¹                  | 0.2         | 0.045      | 20           | 4.89        |
| Lead <sup>3</sup>      | 0.003       | 0.0012     | 1.           | 0.08        |
| Magnesium              | 0.1         | 0.018      | 10           | 1.98        |
| Manganese <sup>1</sup> | 0.005       | 0.00051    | 0.5          | 0.038       |
| Mercury <sup>2</sup>   | 0.0002      | 0.00016    | 0.1          | 0.0028      |
| Nickel <sup>1</sup>    | 0.01        | 0.0038     | 1.           | 0.2         |
| Potassium              | 0.5         | 0.043      | 50           | 3.72        |
| Selenium <sup>1</sup>  | 0.01        | 0.0047     | 1.           | 0.47        |
| Silver <sup>1</sup>    | 0.005       | 0.0018     | 0.5          | 0.15        |
| Sodium                 | 1.          | 0.46       | 100          | 47.2        |
| Thallium <sup>3</sup>  | 0.01        | 0.0074     | 2.           | 0.16        |
| Vanadium¹              | 0.005       | 0.0017     | 0.5          | 0.16        |
| Zinc <sup>1</sup>      | 0.005       | 0.0041     | 2.           | 0.18        |
| Cyanide, total⁴        | 0.005       | 0.01       | 0.18         | 0.5         |

<sup>&</sup>lt;sup>1</sup>Analyzed by Trace ICP

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>&</sup>lt;sup>2</sup>Analyzed by Cold Vapor

<sup>&</sup>lt;sup>3</sup>Analyzed by GFAA

<sup>&</sup>lt;sup>4</sup>Analyzed by automated spectrophotometer

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis, will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 8 of 43

**Table B4-3**Inorganic Priority Pollutants List

| Analyte                       | Wat          | Waters     |               | S***        |
|-------------------------------|--------------|------------|---------------|-------------|
|                               | LOQ** (mg/L) | MDL (mg/L) | LOQ** (mg/kg) | MDL (mg/kg) |
| Antimony                      | 0.02         | 0.0085     | 2.            | 0.66        |
| Arsenic                       | 0.01         | 0.0049     | 1.            | 0.5         |
| Beryllium                     | 0.005        | 0.00034    | 0.5           | 0.059       |
| Cadmium                       | 0.005        | 0.00087    | 0.5           | 0.054       |
| Chromium                      | 0.005        | 0.0022     | 0.5           | 0.2         |
| Copper                        | 0.01         | 0.0021     | 1.            | 0.19        |
| Lead                          | 0.02         | 0.0093     | 2.            | 0.79        |
| Mercury*                      | 0.0002       | 0.00016    | 0.1           | 0.0028      |
| Nickel                        | 0.01         | 0.0038     | 1.            | 0.2         |
| Selenium                      | 0.01         | 0.0047     | 1.            | 0.47        |
| Silver                        | 0.005        | 0.0018     | 0.5           | 0.15        |
| Thallium                      | 0.02         | 0.0089     | 2.            | 0.93        |
| Zinc                          | 0.005        | 0.0041     | 2.            | 0.18        |
| Cyanide, total <sup>†</sup>   | 0.01         | 0.005      | 0.5           | 0.18        |
| Phenolics, total <sup>†</sup> | 0.03         | 0.009      | 3.5           | 1.2         |

<sup>\*</sup>Mercury is analyzed by Cold Vapor.

Except for Cyanide, Phenolics, and Mercury, all other elements analyzed by ICP.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>†</sup>Cyanide and Phenolics analyzed by distillation followed by automated colorimetry.

<sup>\*\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 9 of 43

Table B4-4
Inorganic Appendix IX Analyte List

|                             | Wa           | Waters     |               | Soils***    |  |
|-----------------------------|--------------|------------|---------------|-------------|--|
| Analyte                     | LOQ** (mg/L) | MDL (mg/L) | LOQ** (mg/kg) | MDL (mg/kg) |  |
| Antimony                    | 0,02         | 0.0085     | 2,            | 0.66        |  |
| Arsenic                     | 0.01         | 0.0049     | 1.            | 0.5         |  |
| Barium                      | 0.005        | 0.00042    | 0.5           | 0.032       |  |
| Beryllium                   | 0.005        | 0.00034    | 0.5           | 0.059       |  |
| Cadmium                     | 0.005        | 0.00087    | 0.5           | 0.054       |  |
| Chromium                    | 0.005        | 0.0022     | 0.5           | 0.2         |  |
| Cobalt                      | 0.005        | 0.0016     | 0.5           | 0.14        |  |
| Copper                      | 0.01         | 0.0021     | 1.            | 0.19        |  |
| Lead                        | 0.02         | 0.0093     | 2.            | 0.79        |  |
| Mercury*                    | 0.0002       | 0.00016    | 0.1           | 0.0028      |  |
| Nickel                      | 0.01         | 0.0038     | 1.            | 0.2         |  |
| Selenium                    | 0.01         | 0.0047     | 1.            | 0.47        |  |
| Silver                      | 0.005        | 0.0018     | 0.5           | 0.15        |  |
| Thallium                    | 0.02         | 0.0089     | 2.            | 0.93        |  |
| Tin                         | 0.02         | 0.005      | 10.           | 0.41        |  |
| Vanadium                    | 0.005        | 0.0017     | 0.5           | 0.16        |  |
| Zinc                        | 0.005        | 0.0041     | 2.            | 0.18        |  |
| Cyanide, total <sup>†</sup> | 0.01         | 0.005      | 0.5           | 0.18        |  |
| Sulfide, total††            | 2.           | 0.53       | 30            | 8.4         |  |

<sup>\*</sup>Mercury is analyzed by Cold Vapor.

Except for Cyanide, Sulfide, and Mercury, all other elements are analyzed by ICP.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>†</sup>Cyanide is analyzed by distillation followed by automated colorimetry.

<sup>††</sup>Sulfide is analyzed by 9034 (modified), titrimetric analysis.

<sup>\*\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 10 of 43

Table B4-5
Metals by ICP/MS List

|            | Wa           | ters       | Soils***      |             |  |
|------------|--------------|------------|---------------|-------------|--|
| Analyte    | LOQ** (mg/L) | MDL (mg/L) | LOQ** (mg/kg) | MDL (mg/kg) |  |
| Aluminum   | 0.1          | 0.025      | 10            | 0.74        |  |
| Antimony   | 0.001        | 0.00009    | 0.1           | 0.0027      |  |
| Arsenic    | 0.0002       | 0.000059   | 0.02          | 0.0055      |  |
| Barium     | 0.00025      | 0.000073   | 0.2           | 0.051       |  |
| Beryllium  | 0.0001       | 0.000012   | 0.01          | 0.0031      |  |
| Cadmium    | 0.0001       | 0.000027   | 0.02          | 0.0036      |  |
| Calcium    | 0.05         | 0.013      | 20            | 3.5         |  |
| Chromium   | 0.001        | 0.000071   | 0.1           | 0.018       |  |
| Cobalt     | 0.0001       | 0.000018   | 0.01          | 0.00056     |  |
| Copper     | 0.001        | 0.00023    | 0.1           | 0.018       |  |
| Iron       | 0.075        | 0.016      | 20            | 5.8         |  |
| Lead       | 0.001        | 0.00021    | 0.1           | 0.028       |  |
| Magnesium  | 0.01         | 0.0014     | 1             | 0.28        |  |
| Manganese  | 0.00075      | 0.00018    | 0.2           | 0.032       |  |
| Molybdenum | 0.001        | 0.000043   | 0.1           | 0.01        |  |
| Nickel     | 0.0002       | 0.000058   | 0.05          | 0.0098      |  |
| Potassium  | 0.05         | 0.0072     | 5             | 1           |  |
| Selenium   | 0.001        | 0.0002     | 0.1           | 0.017       |  |
| Silver     | 0.0005       | 0.000081   | 0.05          | 0.0039      |  |
| Sodium     | 0.2          | 0.027      | 20            | 3.3         |  |
| Strontium  | 0.0005       | 0.000044   | 0.1           | 0.023       |  |
| Thallium   | 0.0005       | 0.00013    | 0.01          | 0.0023      |  |
| Tin        | 0.0002       | 0.000039   | 1 .           | 0.24        |  |
| Titanium   | 0.001        | 0.0002     | 0.2           | 0.049       |  |
| Vanadium   | 0.0002       | 0.000025   | 0.02          | 0.0041      |  |
| Zinc       | 0.01         | 0.0019     | 0.5           | 0.1         |  |

<sup>\*\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Method 6020 (ICP/MS) - LOQ and MDLs are evaluated annually and subject to change.

<sup>\*\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 11 of 43

**Table B4-6**Miscellaneous Chemistry Analyte List

|                                      | Waters      |            | Soils**      |             |
|--------------------------------------|-------------|------------|--------------|-------------|
| Parameter                            | LOQ* (mg/L) | MDL (mg/L) | LOQ* (mg/kg) | MDL (mg/kg) |
| Cyanide, total                       | 0.01        | 0.005      | 0.5          | 0.18        |
| Hexane Extractable Materials (1664A) | 5.          | 1.7        | N/A          | N/A         |
| Moisture                             | N/A         | N/A        | 0.5 wt.%     | 0.5 wt.%    |
| Phenolics, total                     | 0.03        | 0.009      | 3.5          | 1.2         |
| Sulfide, total                       | 2.          | 0.53       | 30           | 8.4         |
| TOC                                  | 2.          | 0.5        | 170          | 60          |
| Total Nitrite/Nitrate                | 0.1         | 0.04       | N/A          | N/A         |
| TOX                                  | 20          | 7.         | 200          | 70          |
| TPH (418.1)                          | 1.3         | 0.4        | 69           | 23          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 12 of 43

Table B4-7
Volatile Full Compound List by GC/MS (8260B)

|                           | Wa          | ters       | Soils**       |             |
|---------------------------|-------------|------------|---------------|-------------|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* ( μg/kg) | MDL (µg/kg) |
| Dichlorodifluoromethane   | 5.          | 2.         | 5.            | 2.          |
| Chloromethane             | 5.          | 1.         | 5.            | 2.          |
| Vinyl Chloride            | 5.          | 1.         | 5.            | 1.          |
| Bromomethane              | 5.          | 1.         | 5.            | 2.          |
| Chloroethane              | 5.          | 1.         | 5.            | 2.          |
| Trichlorofluoromethane    | 5.          | 2.         | 5.            | 2.          |
| 1,1-Dichloroethene        | 5.          | 0.8        | 5.            | 1.          |
| 1,1-Dichloroethane        | 5.          | 1.         | 5.            | 1.          |
| Methylene Chloride        | 5.          | 2.         | 5.            | 2.          |
| trans-1,2-Dichloroethene  | 5.          | 0.8        | 5.            | 1.          |
| 2,2-Dichloropropane       | 5.          | 1.         | 5.            | 1.          |
| cis-1,2-Dichloroethene    | 5.          | 0.8        | 5.            | 1.          |
| Chloroform                | 5.          | 0.8        | 5.            | 1.          |
| Bromochloromethane        | 5.          | 1.         | 5.            | 1.          |
| 1,1,1-Trichloroethane     | 5.          | 0.8        | 5.            | 1.          |
| Carbon Tetrachloride      | 5.          | 1.         | 5.            | 1.          |
| 1,1-Dichloropropene       | 5.          | 1.         | 5.            | 1.          |
| Benzene                   | 5.          | 0.5        | 5.            | 0.5         |
| 1,2-Dichloroethane        | 5.          | 1.         | 5.            | 1.          |
| Trichloroethene           | 5.          | 1.         | 5.            | 1.          |
| 1,2-Dichloropropane       | 5.          | 1.         | 5.            | 1.          |
| Dibromomethane            | 5.          | 1.         | 5.            | 1.          |
| Bromodichloromethane      | 5.          | 1.         | 5.            | 1.          |
| Toluene                   | 5.          | 0.7        | 5.            | 1.          |
| 1,1,2-Trichloroethane     | 5.          | 0.8        | 5.            | 1.          |
| Tetrachloroethene         | 5.          | 0.8        | 5.            | 1.          |
| 1,3-Dichloropropane       | 5.          | 1.         | 5.            | 1.          |
| Dibromochloromethane      | 5.          | 1.         | 5.            | 1.          |
| 1,2-Dibromoethane         | 5.          | 1.         | 5.            | 1.          |
| Chlorobenzene             | 5.          | 0.8        | 5.            | 1.          |
| 1,1,1,2-Tetrachloroethane | 5.          | 1.         | 5.            | 1.          |
| Ethylbenzene              | 5.          | 0.8        | 5.            | 1.          |

Element B4 Revision No. 2 Date: 07/01/04 Page 13 of 43

# **Table B4-7 – Continued**Volatile Full Compound List by GC/MS (8260B)

|                             | Wa          | ters       | Soils**      |             |
|-----------------------------|-------------|------------|--------------|-------------|
| Compound Name               | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| m+p-Xylene                  | 5.          | 0.8        | 5.           | 1.          |
| o-Xylene                    | 5.          | 0.8        | 5.           | 1.          |
| Styrene                     | 5.          | 1.         | 5.           | 1.          |
| Bromoform                   | 5.          | _ 1.       | 5.           | 1.          |
| Isopropylbenzene            | 5.          | 1.         | 5.           | 1.          |
| 1,1,2,2-Tetrachloroethane   | 5.          | 1.         | 5.           | 1.          |
| Bromobenzene                | 5.          | 1.         | 5.           | 1.          |
| 1,2,3-Trichloropropane      | 5.          | 1.         | 5.           | . 1.        |
| n-Propylbenzene             | 5.          | 1.         | 5.           | 1.          |
| 2-Chlorotoluene             | 5.          | 1.         | 5.           | 1.          |
| 1,3,5-Trimethylbenzene      | 5.          | 1.         | 5.           | 1.          |
| 4-Chlorotoluene             | 5.          | 1.         | 5.           | 1.          |
| tert-Butylbenzene           | 5.          | 1.         | 5.           | 1.          |
| 1,2,4-Trimethylbenzene      | 5.          | 1.         | 5.           | 1.          |
| sec-Butylbenzene            | 5.          | 1.         | 5.           | 1.          |
| <i>p</i> -Isopropyltoluene  | 5.          | 1.         | 5.           | 1.          |
| 1,3-Dichlorobenzene         | 5.          | 1.         | 5.           | 1.          |
| 1,4-Dichlorobenzene         | 5.          | 1.         | 5.           | 1.          |
| <i>n</i> -Butylbenzene      | 5.          | 1,         | 5.           | 1.          |
| 1,2-Dichlorobenzene         | 5.          | 1.         | 5.           | 1.          |
| 1,2-Dibromo-3-chloropropane | 5.          | 2.         | 5.           | 2.          |
| 1,2,4-Trichlorobenzene      | 5.          | 1.         | 5.           | 1.          |
| Hexachlorobutadiene         | 5.          | 2.         | 5.           | 2.          |
| Naphthalene                 | 5.          | 1.         | 5.           | 1.          |
| 1,2,3-Trichlorobenzene      | 5.          | 1.         | 5.           | 1.          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 14 of 43

Table B4-8
Volatile Priority Pollutant Compound List by GC/MS (8260B)

|                           | Wa          | ters       | Soils**      |             |
|---------------------------|-------------|------------|--------------|-------------|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| 1,1,1-Trichloroethane     | 5.          | 0.8        | 5.           | 1.          |
| 1,1,2,2-Tetrachloroethane | 5.          | 1.         | 5.           | 1.          |
| 1,1,2-Trichloroethane     | 5.          | 0.8        | 5.           | 1,          |
| 1,1-Dichloroethane        | 5.          | 1.         | 5.           | 1.          |
| 1,1-Dichloroethene        | 5.          | 0.8        | 5.           | 1.          |
| 1,2-Dichloroethane        | 5.          | 1.         | 5.           | 1.          |
| 1,2-Dichloropropane       | 5.          | 1.         | 5.           | 1.          |
| 2-Chloroethylvinyl ether  | 10          | 2.         | 10           | 2.          |
| Acrolein                  | 100         | 40         | 100          | 20          |
| Acrylonitrile             | 20          | 4.         | 20           | 4.          |
| Benzene                   | 5.          | 0.5        | 5.           | 0.5         |
| Bromodichloromethane      | 5.          | 1.         | 5.           | 1.          |
| Bromoform                 | 5.          | 1.         | 5.           | 1.          |
| Bromomethane              | 5.          | 1.         | 5.           | 2.          |
| Carbon tetrachloride      | 5.          | 1.         | 5.           | 1.          |
| Chlorobenzene             | 5.          | 0.8        | 5.           | 1.          |
| Chloroethane              | 5.          | 1.         | 5.           | 2.          |
| Chloroform                | 5.          | 0.8        | 5.           | 1.          |
| Chloromethane             | 5.          | 1.         | 5.           | 2.          |
| cis-1,2-Dichloroethene    | 5.          | 0.8        | 5.           | · 1.        |
| cis-1,3-Dichloropropene   | 5.          | 1.         | 5.           | 1.          |
| Dibromochloromethane      | 5.          | 1.         | 5.           | 1.          |
| Ethylbenzene              | 5.          | 0.8        | 5.           | 1.          |
| Methylene chloride        | 5.          | 2.         | 5.           | 2.          |
| Tetrachloroethene         | 5.          | 0.8        | 5.           | 1.          |
| Toluene                   | 5.          | 0.7        | 5.           | 1.          |
| trans-1,2-Dichloroethene  | 5.          | 0.8        | 5.           | 1.          |
| trans-1,3-Dichloropropene | 5.          | 1.         | 5.           | 1.          |
| Trichloroethene           | 5.          | 1.         | 5.           | 1,          |
| Trichlorofluoromethane    | 5.          | 2.         | 5.           | 2.          |
| Vinyl chloride            | 5.          | 1.         | 5.           | 1.          |
| Xylene (total)            | 5.          | 0.8        | 5.           | 1.          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 2 Date: 07/01/04 Page 15 of 43

**Table B4-9**Appendix IX Volatile Compounds by GC/MS (8260B)

|                           | ·Wa         | ters       | Soils**      |             |  |
|---------------------------|-------------|------------|--------------|-------------|--|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |  |
| Chloromethane             | 5.          | 1.         | 5.           | 2.          |  |
| Bromomethane              | 5.          | 1.         | 5.           | 2.          |  |
| Vinyl chloride            | 5.          | 1.         | 5.           | 1.          |  |
| Dichlorodifluoromethane   | 5.          | 2.         | 5.           | 2.          |  |
| Chloroethane              | 5.          | 1.         | 5.           | 2.          |  |
| Methyl iodide             | 5.          | 1.         | 5.           | 3.          |  |
| Acrolein                  | 100         | 40         | 100          | 20          |  |
| Acrylonitrile             | 20          | 4.         | 20           | 4.          |  |
| Acetonitrile              | 100         | 25         | 100          | 25          |  |
| Methylene chloride        | 5.          | 2.         | 5.           | 2.          |  |
| Acetone                   | 20          | 6.         | 20           | 7.          |  |
| Trichlorofluoromethane    | 5.          | 2.         | 5.           | 2.          |  |
| Carbon disulfide          | 5.          | 1.         | 5.           | 1.          |  |
| Propionitrile             | 100         | 30         | 100          | 30          |  |
| 1,1-Dichloroethene        | 5.          | 0.8        | 5.           | 1.          |  |
| Allyl chloride            | 5.          | 1.         | 5.           | 1.          |  |
| 1,1-Dichloroethane        | 5.          | 1.         | 5.           | 1.          |  |
| trans-1,2-Dichloroethene  | 5.          | 0.8        | 5.           | 1.          |  |
| Chloroform                | 5.          | 0.8        | 5.           | 1.          |  |
| 1,2-Dichloroethane        | 5.          | 1.         | 5.           | · 1.        |  |
| Methacrylonitrile         | . 50        | 10         | 50           | 5.          |  |
| 2-Butanone                | 10          | 3.         | 10           | 4.          |  |
| Dibromomethane            | 5.          | 1.         | 5.           | 1.          |  |
| 1,1,1-Trichloroethane     | 5.          | 0.8        | 5.           | 1.          |  |
| 1,4-Dioxane               | 250         | 70         | 250          | 70          |  |
| Carbon tetrachloride      | 5.          | 1.         | 5.           | 1.          |  |
| Isobutyl alcohol          | 250         | 100        | 250          | 100         |  |
| Vinyl acetate             | 10          | 2.         | 10           | 2.          |  |
| Bromodichloromethane      | 5.          | 1.         | 5.           | 1.          |  |
| 2-Chloro-1,3-butadiene    | 5.          | 1.         | 5.           | 1.          |  |
| 1,2-Dichloropropane       | 5.          | 1.         | 5.           | 1.          |  |
| trans-1,3-Dichloropropene | 5.          | 1.         | 5.           | 1.          |  |

Element B4 Revision No. 2 Date: 07/01/04 Page 16 of 43

# **Table B4-9 – Continued**Appendix IX Volatile Compounds by GC/MS (8260B)

|                             | Wa          | ters       | Soils**      |             |
|-----------------------------|-------------|------------|--------------|-------------|
| Compound Name               | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Trichloroethene             | 5.          | 1.         | 5.           | 1.          |
| Dibromochloromethane        | 5.          | 1.         | 5.           | 1.          |
| 1,1,2-Trichloroethane       | 5.          | 0.8        | 5.           | 1.          |
| 1,2-Dibromoethane           | 5.          | 1.         | 5.           | 1.          |
| cis-1,2-Dichloroethene      | 5.          | 0.8        | 5.           | 1.          |
| Benzene                     | 5.          | 0.5        | 5.           | 0.5         |
| cis-1,3-Dichloropropene     | 5.          | 1.         | 5.           | 1.          |
| Methyl methacrylate         | 5.          | 1.         | 5.           | 1.          |
| 1,1,1,2-Tetrachloroethane   | 5.          | 1.         | 5.           | 1.          |
| Bromoform                   | 5.          | 1.         | 5.           | 1.          |
| trans-1,4-Dichloro-2-butene | 50          | 15         | 50           | 10          |
| 1,2,3-Trichloropropane      | 5.          | 1.         | 5.           | 1.          |
| 2-Hexanone                  | 10          | 3.         | 10           | 3.          |
| 4-Methyl-2-pentanone        | 10          | 3.         | 10           | 3.          |
| Tetrachloroethene           | 5.          | 0.8        | 5.           | 1.          |
| 1,1,2,2-Tetrachloroethane   | 5.          | 1.         | 5.           | 1.          |
| Toluene                     | 5.          | 0.7        | 5.           | 1.          |
| Ethyl methacrylate          | 5.          | 1.         | 5.           | 1.          |
| Chlorobenzene               | 5.          | 0.8        | 5.           | 1.          |
| Pentachloroethane           | 5.          | 1.         | 5.           | 1.          |
| Ethylbenzene                | 5.          | 0.8        | 5.           | 1.          |
| 1,2-Dibromo-3-chloropropane | 5.          | 2.         | 5.           | 2.          |
| Styrene                     | 5.          | 1.         | 5.           | 1.          |
| Xylenes (total)             | 5.          | 0.8        | 5.           | 1.          |

For samples preserved with 1:1 HCl to pH <2, low recovery of acid labile compounds is likely to occur.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 17 of 43

**Table B4-10**TCL3.2 Volatile Compounds by GC/MS (8260B)

|                           | Wa          | ters       | Soils**      |             |
|---------------------------|-------------|------------|--------------|-------------|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Chloromethane             | 5.          | 1.         | 5.           | 2.          |
| Bromomethane              | 5.          | 1.         | 5.           | 2.          |
| Vinyl chloride            | 5.          | 1.         | 5.           | 1.          |
| Chloroethane              | 5.          | 1.         | 5.           | 2.          |
| Methylene chloride        | 5.          | 2.         | 5.           | 2.          |
| Acetone                   | 20          | 6.         | 20           | 7.          |
| Carbon disulfide          | 5.          | 1.         | 5.           | 1.          |
| 1,1-Dichloroethene        | 5.          | 0.8        | 5.           | 1.          |
| Chloroform                | 5.          | 0.8        | 5.           | 1.          |
| 1,2-Dichloroethane        | 5.          | 1.         | 5.           | .1.         |
| 2-Butanone                | 10          | 3.         | 10           | 4.          |
| 1,1,1-Trichloroethane     | 5.          | 0.8        | 5.           | 1.          |
| Carbon tetrachloride      | 5.          | 1.         | 5.           | 1.          |
| Bromodichloromethane      | 5.          | 1.         | 5.           | 1,          |
| 1,2-Dichloropropane       | 5.          | 1.         | 5.           | 1.          |
| trans-1,3-Dichloropropene | 5.          | 1.         | 5.           | 1.          |
| Trichloroethene           | 5.          | 1.         | 5.           | 1.          |
| Dibromochloromethane      | 5.          | 1.         | 5.           | 1.          |
| 1,1,2-Trichloroethane     | 5.          | 0.8        | 5.           | 1.          |
| Benzene                   | 5.          | 0.5        | 5.           | 0.5         |
| cis-1,3-Dichloropropene   | 5.          | 1.         | 5.           | 1.          |
| Bromoform                 | 5.          | 1.         | 5.           | 1,          |
| 2-Hexanone                | 10          | 3.         | 10           | 3.          |
| 4-Methyl-2-pentanone      | 10          | 3.         | 10           | 3.          |
| Tetrachloroethene         | 5.          | 0.8        | 5.           | 1,          |
| 1,1,2,2-Tetrachloroethane | 5.          | 1.         | 5.           | 1.          |

Element B4 Revision No. 2 Date: 07/01/04 Page 18 of 43

Table B4-10 - Continued

### TCL3.2 Volatile Compounds by GC/MS (8260B)

| Compound Name          | Wa          | Waters     |              | ls**        |
|------------------------|-------------|------------|--------------|-------------|
|                        | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Toluene                | 5.          | 0.7        | 5.           | 1.          |
| Chlorobenzene          | 5.          | 0.8        | 5.           | 1.          |
| Ethylbenzene           | 5.          | 0.8        | 5.           | 1.          |
| Styrene                | 5.          | 1.         | 5.           | 1.          |
| Xylenes (total)        | 5.          | 0.8        | 5.           | 1.          |
| cis-1,2-Dichloroethene | 5.          | 0.8        | 5.           | 1.          |

For samples preserved with 1:1 HCl to pH <2, low recovery of acid labile compounds is likely to occur.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 19 of 43

**Table B4-11**TCL4.2 Volatile Compounds by GC/MS (8260B)

|                             | Wa          | ters       | Soils**      |             |
|-----------------------------|-------------|------------|--------------|-------------|
| Compound Name               | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| 1,1-Dichloroethane          | 5.          | 1.         | 5.           | 1.          |
| trans-1,2-Dichloroethene    | 5.          | 0.8        | 5.           | 1.          |
| 1,1,1-Trichloroethane       | 5.          | 0.8        | 5.           | 1.          |
| 1,1,2,2-Tetrachloroethane   | 5.          | 1.         | 5.           | 1.          |
| 1,1,2-Trichloroethane       | 5.          | 0.8        | 5.           | 1.          |
| 1,1-Dichloroethene          | 5.          | 0.8        | 5.           | 1.          |
| 1,1-Dichloroethane          | 5.          | 1.         | 5.           | 1.          |
| 1,2,4-Trichlorobenzene      | 5.          | 1.         | 5.           | 1.          |
| 1,2-Dibromo-3-chloropropane | 5.          | 2.         | 5.           | 2.          |
| 1,2-Dibromoethane           | 5.          | 1.         | 5.           | 1.          |
| 1,2-Dichlorobenzene         | 5.          | 1.         | 5.           | . 1.        |
| 1,2-Dichloroethane          | 5.          | 1.         | 5.           | 1.          |
| 1,2-Dichloropropane         | 5.          | 1.         | 5.           | 1.          |
| 1,3-Dichlorobenzene         | 5.          | 1.         | 5.           | 1.          |
| 1,4-Dichlorobenzene         | 5.          | 1.         | 5.           | 1.          |
| 2-Butanone                  | 10          | 3.         | 10           | 4.          |
| 2-Hexanone                  | 10          | 3.         | 10           | 3.          |
| 4-Methyl-2-pentanone        | 10          | 3.         | 10           | 3.          |
| Acetone                     | 20          | 6.         | 20           | 7.          |
| Benzene                     | 5.          | 0.5        | 5.           | 0.5         |
| Bromodichloromethane        | 5.          | 1.         | 5.           | 1.          |
| Bromoform                   | 5.          | 1.         | 5.           | 1.          |
| Bromomethane                | 5.          | 1.         | 5.           | 2.          |
| Carbon disulfide            | 5.          | 1.         | 5.           | 1.          |
| Carbon tetrachloride        | 5.          | 1.         | 5.           | 1.          |
| Chlorobenzene               | 5.          | 0.8        | 5.           | 1.          |
| Chloroethane                | 5.          | 1.         | 5.           | 2.          |
| Chloroform                  | 5.          | 0.8        | 5.           | 1.          |
| Chloromethane               | 5.          | 1.         | 5.           | 2.          |
| cis-1,2-Dichloroethene      | 5.          | 0.8        | 5.           | 1.          |
| cis-1,3-Dichloropropene     | 5.          | 1.         | 5.           | 1.          |
| Cyclohexane                 | 5.          | 2.         | 5.           | 1,          |

Element B4 Revision No. 2 Date: 07/01/04 Page 20 of 43

### Table B4-11 – Continued TCL4.2 Volatile Compounds by GC/MS (8260B)

|                           | Wa          | ters       | Soi          | ls**        |
|---------------------------|-------------|------------|--------------|-------------|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Dibromochloromethane      | 5.          | 1.         | 5.           | 1.          |
| Dichlorodifluoromethane   | 5.          | 2.         | 5.           | 2.          |
| Ethylbenzene              | 5.          | 0.8        | 5.           | 1.          |
| Freon 113                 | 10          | 2.         | 10           | 2.          |
| Isopropylbenzene          | 5.          | 1.         | 5.           | 1.          |
| Methyl Acetate            | 5.          | 1.         | 5.           | 2.          |
| Methyl t-butyl ether      | 5.          | 0.5        | 5.           | 0.5         |
| Methylcyclohexane         | 5.          | 1.         | 5.           | 1.          |
| Methylene chloride        | 5.          | 2.         | 5.           | 2.          |
| Styrene                   | 5.          | 1.         | 5.           | 1.          |
| Tetrachloroethene         | 5.          | 0.8        | 5.           | 1.          |
| Toluene                   | 5.          | 0.7        | 5.           | 1.          |
| trans-1,2-Dichloroethene  | 5.          | 0.8        | 5.           | 1.          |
| trans-1,3-Dichloropropene | 5.          | 1.         | 5.           | 1.          |
| Trichloroethene           | 5.          | 1.         | 5.           | 1.          |
| Trichlorofluoromethane    | 5.          | 2.         | 5.           | 2.          |
| Vinyl chloride            | 5.          | 1.         | 5.           | 1.          |
| Xylenes (total)           | 5.          | 0.8        | 5.           | 1.          |

For samples preserved with 1:1 HCl to pH <2, low recovery of acid labile compounds is likely to occur.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 21 of 43

**Table B4-12**Semivolatile Full Compound List by GC/MS (8270C)

|                                   | Wa          | ters       | Soils**      |             |
|-----------------------------------|-------------|------------|--------------|-------------|
| Compound Name                     | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Acenaphthene                      | 10          | 1.         | 330          | 33          |
| Acenaphthylene                    | 10          | 1.         | 330          | 33          |
| Acetophenone                      | 10          | 2.         | 330          | 67          |
| Aramite <sup>2</sup>              | 50          | 1.         | 1700         | 33          |
| 2-Acetylaminofluorene             | 10          | 2.         | 330          | 67          |
| 4-Aminobiphenyl                   | 10          | 2.         | 830          | 170         |
| Aniline                           | 10          | 1.         | 330          | 33          |
| Anthracene                        | 10          | 1.         | 330          | 33          |
| Benzidine Benzidine               | 100         | 20         | 3300         | 670         |
| Benzo(a)anthracene                | 10          | 1.         | 330          | 33          |
| Benzo(b)fluoranthene              | 10          | 1.         | 330          | 33          |
| Benzo(k)fluoranthene              | 10          | 1.         | 330          | 33          |
| Benzo(g,h,i)perylene              | 10          | 1.         | 330          | 33          |
| Benzo(a)pyrene                    | 10          | 1.         | 330          | 33          |
| Benzyl alcohol                    | 20          | 5.         | 330          | 170         |
| bis (2-Chloroethoxy)methane       | 10          | 1.         | 330          | 33          |
| bis(2-Chloroethyl)ether           | 10          | 1.         | 330          | 33          |
| bis(2-Chloroisopropyl)ether       | 10          | 1.         | 330          | 33          |
| bis(2-Ethylhexyl)phthalate        | 10          | 2.         | 330          | 170         |
| 4-Bromophenyl phenylether         | 10          | 1.         | 330          | 33          |
| Butylbenzylphthalate              | 10          | 2.         | 330          | 67          |
| 4-Chloroaniline                   | 10          | 1.         | 330          | 33          |
| Carbazole                         | 10          | 1.         | 330          | 33          |
| Chlorobenzilate                   | 20          | 3.         | 330          | .33         |
| 4-Chloro-3-methylphenol           | 10          | 1.         | 330          | 67          |
| 2-Chloronaphthalene               | 10          | 1.         | 330          | 33          |
| 2-Chlorophenol                    | 10          | 1.         | 330          | 33          |
| 4-Chlorophenyl phenylether        | 10          | 1.         | 330          | 33          |
| Chrysene                          | 10          | 1.         | 330          | 33          |
| 2-Methylnaphthalene               | 10          | 1.         | 330          | 33          |
| 3 or 4-methyl phenol <sup>3</sup> | 10          | 2.         | 330          | 67          |

Element B4 Revision No. 2 Date: 07/01/04 Page 22 of 43

# Table B4-12 – Continued Semivolatile Full Compound List by GC/MS (8270C)

|                                         | Wa          | ters       | Soils**      |             |
|-----------------------------------------|-------------|------------|--------------|-------------|
| Compound Name                           | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Diallate (cis/trans)                    | 10          | 1.         | 330          | 33          |
| Dibenzofuran                            | 10          | 1.         | 330          | 33          |
| Di-n-butylphthalate                     | 10          | 2.         | 330          | 67          |
| Dibenz(a,h)anthracene                   | 10          | 1.         | 330          | 33          |
| 1,2-Dichlorobenzene                     | 10          | 1.         | 330          | 33          |
| 1,3-Dichlorobenzene                     | 10 .        | 1.         | 330          | 33          |
| 1,4-Dichlorobenzene                     | 10          | 1.         | 330          | 33          |
| 3,3'-Dichlorobenzidine                  | 10          | 1.         | 670          | 67          |
| 2,4-Dichlorophenol                      | 10          | 1.         | 330          | 33          |
| 2,6-Dichlorophenol                      | 10          | 2.         | 330          | 67          |
| Diethylphthalate                        | 10          | 2.         | 330          | 67          |
| Dimethoate                              | 20          | 3.         | 330          | 33          |
| ρ-(Dimethylamino)azobenzene             | 10          | 2.0        | 330          | 67          |
| 7,12-Dimethylbenz(a)anthracene          | 10          | 2.         | 330          | 33          |
| 3,3'-Dimethylbenzidine                  | 25          | 10.        | 830          | 170         |
| a,a-Dimethylphenethylamine <sup>2</sup> | 50          | 1.         | 1700         | 33          |
| 2,4-Dimethylphenol                      | 10          | 1.         | 330          | 33          |
| Dimethylphthalate                       | 10          | 2.         | 330          | 67          |
| 1,3-Dinitrobenzene                      | 10          | 1.         | 330          | 67          |
| 4,6-Dinitro-2-methylphenol              | 25          | 5.         | 830          | 170         |
| 2,4-Dinitrophenol                       | 60          | 20         | 2000         | 670         |
| 2,4-Dinitrotoluene                      | 10          | 1.         | 330          | 67          |
| 2,6-Dinitrotoluene                      | 10          | 1.         | 330          | 33          |
| Di-n-octylphthalate                     | 10          | 2.         | 330          | 67          |
| 1,2-Diphenylhydrazine <sup>4</sup>      | 10          | 1.         | 330          | 33          |
| Ethylmethanesulfonate                   | 10          | 2.         | 330          | 67          |
| Fluoranthene                            | 10          | 1.         | 330          | 33          |
| Fluorene                                | 10          | 1.         | 330          | 33          |
| Hexachlorobenzene                       | 10          | 1.         | 330          | 33          |
| Hexachlorobutadiene                     | 10          | 1.         | 330          | 67          |
| Hexachlorocyclopentadiene               | 25          | 5.         | 670          | 170         |
| Hexachloroethane                        | 10          | 1.         | 330          | 33          |

Element B4 Revision No. 2 Date: 07/01/04 Page 23 of 43

Table B4-12 – Continued
Semivolatile Full Compound List by GC/MS (8270C)

| Compound Name             | Wa          | ters       | Soils**      |             |
|---------------------------|-------------|------------|--------------|-------------|
|                           | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (μg/kg) |
| Hexachloropropene         | 10          | 2.         | 330          | 100         |
| Indeno(1,2,3-cd)pyrene    | 10          | 1.         | 330          | 33          |
| Isodrin                   | 10          | 1.         | 330          | 33          |
| Isophorone                | 10          | 1.         | 330          | 33          |
| Isosafrole                | 10          | 1.         | 330          | 67          |
| Methapyrilene             | 10          | 3.         | 330          | 100         |
| 3-Methylcholanthrene      | 10          | 2.         | 330          | 67          |
| Methylmethanesulfonate    | 10          | 1.         | 330          | 33          |
| 2-Methylphenol            | 10          | 1.         | 330          | 33          |
| 1-Methylnaphthalene       | 10          | 1.         | 330          | 33          |
| 2-Methylnaphthalene       | 10          | 1,         | 330          | 33          |
| Naphthalene               | 10          | 1.         | 330          | 33          |
| 1,4-Naphthoquinone        | 100         | 10         | 3300         | 830         |
| 1-Naphthylamine           | 25          | 5.         | 830          | 170         |
| 2-Naphthylamine           | 25          | 5.         | 830          | 170         |
| 2-Nitroaniline            | 10          | 1.         | 330          | 33          |
| 3-Nitroaniline            | 10          | 1.         | 330          | 67          |
| 4-Nitroaniline            | 10          | 1.         | 330          | 67          |
| Nitrobenzene              | 10          | 1.         | 330          | 33          |
| 2-Nitrophenol             | 10          | 1.         | 330          | 33          |
| 4-Nitrophenol             | 50          | 10         | 830          | 170         |
| 4-Nitroquinoline-1-oxide  | 100         | 20         | 1700         | 330         |
| n-Nitrosodi-n-butylamine  | 10          | 2.         | 330          | 67          |
| n-Nitrosodiethylamine     | 10          | 2.         | 330          | 67          |
| n-Nitrosodimethylamine    | 10          | 2.         | 330          | 67          |
| n-Nitrosodiphenylamine¹   | 10          | 2.         | 330          | 33          |
| n-Nitrosodi-n-propylamine | 10          | 1.         | 330          | 33          |
| n-Nitrosomethylethylamine | 10          | 2.         | 330          | 67          |
| n-Nitrosomorpholine       | 10          | 2.         | 330          | 67          |
| n-Nitrosopiperidine       | 10          | 2.         | 330          | 67          |
| n-Nitrosopyrrolidine      | 10          | 2.         | 330          | 67          |
| 5-Nitro-o-toluidine       | 10          | 3.         | 830          | 170         |

Element B4 Revision No. 2 Date: 07/01/04 Page 24 of 43

# Table B4-12 - Continued Semivolatile Full Compound List by GC/MS (8270C)

|                                | Wa          | Waters     |              | s**         |
|--------------------------------|-------------|------------|--------------|-------------|
| Compound Name                  | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| 2,2'-oxybis(1-Chloropropane)   | 25          | ĺ.         | 330          | 33          |
| Pentachlorobenzene             | 10          | 2.         | 330          | 67          |
| Pentachloronitrobenzene        | 10          | 2.         | 330          | 67          |
| Pentachlorophenol              | 25          | 3.         | 830          | 170         |
| Phenacetin                     | 10          | 2.         | 330          | 67          |
| Phenanthrene                   | 10          | 1.         | 330          | 33          |
| Phenol                         | 10          | 1.         | 330          | 33          |
| 1,4-Phenylenediamine           | 200         | 60         | 6700         | 2500        |
| 2-Picoline                     | 10          | 2.         | 330          | 67          |
| Pronamide                      | 10          | 1.         | 330          | 33          |
| Pyrene                         | 10          | 1.         | 330          | 33          |
| Pyridine                       | 10          | 2.         | 330          | 67          |
| Safrole                        | 10          | 2.         | 330          | 67          |
| 1,2,4,5-Tetrachlorobenzene     | 10          | 2.         | 330          | 67          |
| 2,3,4,6-Tetrachlorophenol      | 10          | 2.         | 330          | 67          |
| Tetraethyldithiopyrophosphate  | 10          | 1.         | 330          | 67          |
| Thionazin                      | 10          | 2.         | 330          | 67          |
| o-Toluidine                    | 10          | 1.         | 330          | 67          |
| 1,2,4-Trichlorobenzene         | 10          | 1.         | 330          | 33          |
| 2,4,5-Trichlorophenol          | 10          | 1.         | 330          | 33          |
| 2,4,6-Trichlorophenol          | 10          | 1.         | 330          | 33          |
| O,O,O-Triethylphosphorothioate | 10          | 2.         | 330          | 67          |
| 1,3,5-Trinitrobenzene          | 20          | 5.         | 670          | 170         |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

 $<sup>^{1}</sup>n$ -Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

<sup>&</sup>lt;sup>2</sup>Aramite and a,a-dimethylphenethylamine can be determined upon request.

<sup>&</sup>lt;sup>3</sup>3-methylphenol and 4-methylphenol cannot be resolved under this analysis. The combined total of both compounds is reported as 4-methylphenol.

<sup>&</sup>lt;sup>4</sup>1,2-Diphenylhydrazine cannot be distinguished from azobenzene, therefore, the value reported represents the combined total of both

Element B4 Revision No. 2 Date: 07/01/04 Page 25 of 43

**Table B4-13**Semivolatile Priority Pollutant Compound List by GC/MS (8270C)

|                             | Wa          | ters       | Soils**      |             |
|-----------------------------|-------------|------------|--------------|-------------|
| Compound Name               | LOQ* (µg/L) | MDL (µg/L) | LOQ* (μg/kg) | MDL (µg/kg) |
| 2-Chlorophenol              | 10          | 1.         | 330          | 33          |
| Phenol                      | 10          | 1.         | 330          | 33          |
| 2-Nitrophenol               | 10          | 1.         | 330          | 33          |
| 2,4-Dimethylphenol          | 10          | 1.         | 330          | 33          |
| 2,4-Dichlorophenol          | 10          | 1.         | 330          | 33          |
| 4-Chloro-3-methylphenol     | 10          | 1.         | 330          | 67          |
| 2,4,6-Trichlorophenol       | 10          | 1.         | 330          | 33          |
| 2,4-Dinitrophenol           | 60          | 20         | 2000         | 670         |
| 4-Nitrophenol               | 50          | 10         | 830          | 170         |
| 4,6-Dinitro-2-methylphenol  | 25          | 5.         | 830          | 170         |
| Pentachlorophenol           | 25          | 3.         | 830          | 170         |
| n-Nitrosodimethylamine      | 10          | 2.         | 330          | 67          |
| bis(2-Chloroethyl)ether     | 10          | 1.         | 330          | 33          |
| 1,3-Dichlorobenzene         | 10          | 1.         | 330          | 33          |
| 1,4-Dichlarobenzene         | 10          | 1.         | 330          | 33          |
| 1,2-Dichlorobenzene         | 10          | 1.         | 330          | 33          |
| bis(2-Chloroisopropyl)ether | 10          | 1.         | 330          | 33          |
| Hexachloroethane            | 10          | 1.         | 330          | 33          |
| n-Nitrosodi-n-propylamine   | 10          | 1.         | 330          | 33          |
| Nitrobenzene                | 10          | 1.         | 330          | 33          |
| Isophorone                  | 10          | 1.         | 330          | 33          |
| bis (2-Chloroethoxy)methane | 10          | 1.         | 330          | 33          |
| 1,2,4-Trichlorobenzene      | 10          | 1.         | 330          | 33          |
| Naphthalene                 | 10          | 1.         | 330          | 33          |
| Hexachlorobutadiene         | 10          | 1.         | 330          | 67          |
| Hexachlorocyclopentadiene   | 25          | 5.         | 670          | 170         |
| 2-Chloronaphthalene         | 10          | 1.         | 330          | 33          |
| Acenaphthylene              | 10          | 1.         | 330          | 33          |
| Dimethylphthalate           | 10          | 2.         | 330          | 67          |
| 2,6-Dinitrotoluene          | 10          | 1.         | 330          | 33          |
| Acenaphthene                | 10          | 1.         | 330          | 33          |
| 2,4-Dinitrotoluene          | 10          | 1.         | 330          | 67          |

Element B4 Revision No. 2 Date: 07/01/04 Page 26 of 43

# Table B4-13 – Continued Semivolatile Priority Pollutant Compound List by GC/MS (8270C)

|                                             | Wal         | ers        | Soils**      |             |
|---------------------------------------------|-------------|------------|--------------|-------------|
| Compound Name                               | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Fluorene                                    | 10          | 1.         | 330          | 33          |
| 4-Chlorophenyl phenylether                  | 10          | 1.         | 330          | 33          |
| Diethylphthalate                            | 10          | 2.         | 330          | 67          |
| 1,2-Diphenylhydrazine                       | 10          | 1.         | 330          | 33          |
| <i>n</i> -Nitrosodiphenylamine <sup>1</sup> | 10          | 2.         | 330          | 33          |
| 4-Bromophenyl phenylether                   | 10          | 1.         | 330          | 33          |
| Hexachlorobenzene                           | 10          | 1.         | 330          | 33          |
| Phenanthrene                                | 10          | 1.         | 330          | 33          |
| Anthracene                                  | 10          | 1.         | 330          | 33          |
| Di-n-butylphthalate                         | 10          | 2.         | 330          | 67          |
| Fluoranthene                                | 10          | 1.         | 330          | 33          |
| Pyrene                                      | 10          | 1.         | 330          | 33          |
| Benzidine                                   | 100         | 20         | 3300         | 670         |
| Butylbenzylphthalate                        | 10          | 2.         | 330          | 67          |
| Benzo(a)anthracene                          | 10          | 1.         | 330          | : 33        |
| Chrysene                                    | 10          | 1.         | 330          | 33          |
| 3,3'-Dichlorobenzidine                      | 10          | 1.         | 670          | 67          |
| bis(2-Ethylhexyl)phthalate                  | 10          | 2.         | 330          | 170         |
| Di-n-octylphthalate                         | . 10        | 2.         | 330          | 67          |
| Benzo(b)fluoranthene                        | 10          | 1.         | 330          | 33          |
| Benzo(k)fluoranthene                        | 10          | 1.         | 330          | 33          |
| Benzo(a)pyrene                              | 10          | 1.         | 330          | 33          |
| Indeno(1,2,3-cd)pyrene                      | 10          | 1.         | 330          | 33          |
| Dibenz(a,h)anthracene                       | 10          | 1.         | 330          | 33          |
| Benzo(g,h,i)perylene                        | 10          | 1.         | 330          | 33          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

<sup>&</sup>lt;sup>1</sup>*n*-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for *n*-Nitrosodiphenylamine represents the combined total of both compounds.

Element B4 Revision No. 2 Date: 07/01/04 Page 27 of 43

**Table B4-14**Appendix IX Semivolatile Compounds by GC/MS (8270C)

| Compound Name                     | Wat         | ers        | Soils**      |             |
|-----------------------------------|-------------|------------|--------------|-------------|
|                                   | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Acenaphthene                      | 10          | 1.         | 330          | 33          |
| Acenaphthylene                    | 10          | 1.         | 330          | 33          |
| Acetophenone                      | 10          | 2.         | 330          | 67          |
| 2-Acetylaminofluorene             | 10          | 2.         | 330          | 67          |
| 4-Aminobiphenyl                   | 10          | 2.         | 830          | 170         |
| Aniline                           | 10          | 1.         | 330          | 33          |
| Anthracene                        | 10          | 1.         | 330          | 33          |
| Aramite <sup>2</sup>              | 50          | 1.         | 1700         | 33          |
| Benzo(a)anthracene                | 10          | 1.         | 330          | 33          |
| Benzo(b)fluoranthene              | 10          | 1.         | 330          | 33          |
| Benzo(k)fluoranthene              | 10          | 1.         | 330          | 33          |
| Benzo(g,h,i)perylene              | 10          | 1.         | 330          | 33          |
| Benzo(a)pyrene                    | 10          | 1.         | 330          | 33          |
| Benzyl alcohol                    | 20          | 5.         | 330          | 170         |
| bis (2-Chloroethoxy)methane       | 10          | 1.         | 330          | 33          |
| bis(2-Chloroethyl)ether           | 10          | 1.         | 330          | 33          |
| bis(2-Chloroisopropyl)ether       | 10          | 1.         | 330          | 33          |
| bis(2-Ethylhexyl)phthalate        | 10          | 2.         | 330          | 170         |
| 4-Bromophenyl phenylether         | 10          | 1.         | 330          | 33          |
| Butylbenzylphthalate              | 10          | 2.         | 330          | 67          |
| 4-Chloroaniline                   | 10          | 1.         | 330          | 33          |
| Chlorobenzilate                   | 20          | 3.         | 330          | 33          |
| 4-Chloro-3-methylphenol           | 10          | 1.         | 330          | 67          |
| 2-Chloronaphthalene               | 10          | 1.         | 330          | 33          |
| 2-Chiorophenol                    | 10          | 1.         | 330          | 33          |
| 4-Chlorophenyl phenylether        | 10          | 1.         | 330          | 33          |
| Chrysene                          | 10          | 1.         | 330          | 33          |
| 2-Methylphenol                    | 10          | 1.         | 330          | 33          |
| 3- or 4-Methylphenol <sup>3</sup> | 10          | 2.         | 330          | 67          |
| Diallate (cis/trans)              | 10          | 1.         | 330          | 33          |
| Dibenzofuran                      | 10          | 1.         | 330          | 33          |

Element B4 Revision No. 2 Date: 07/01/04 Page 28 of 43

Table B4-14 – Continued
Appendix IX Semivolatile Compounds by GC/MS (8270C)

|                                         | Wa          | ters       | Soils**      |             |
|-----------------------------------------|-------------|------------|--------------|-------------|
| Compound Name                           | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Di-n-butylphthalate                     | 10          | 2.         | 330          | 67          |
| Dibenz(a,h)anthracene                   | 10          | 1.         | 330          | 33          |
| 1,2-Dichlorobenzene                     | 10          | 1.         | 330          | 33          |
| 1,3-Dichlorobenzene                     | 10          | 1.         | 330          | 33          |
| 1,4-Dichlorobenzene                     | 10          | 1,         | 330          | 33          |
| 3,3'-Dichlorobenzidine                  | 10          | 1.         | 670          | 67          |
| 2,4-Dichlorophenol                      | 10          | 1.         | 330          | 33          |
| 2,6-Dichlorophenol                      | 10          | 2.         | 330          | 67          |
| Diethylphthalate                        | 10          | 2.         | 330          | 67          |
| Dimethoate                              | 20          | 3.         | 330          | 33          |
| p-(Dimethylamino)azobenzene             | 10          | 2.         | 330          | 67          |
| 7,12-Dimethylbenz(a)anthracene          | 10          | 2.         | 330          | 33          |
| 3,3'-Dimethylbenzidine                  | 25          | 10         | 830          | 170         |
| a,a-Dimethylphenethylamine <sup>2</sup> | 50          | 1          | 1700         | 33          |
| 2,4-Dimethylphenol                      | 10          | 1.         | 330          | 33          |
| Dimethylphthalate                       | 10          | 2.         | 330          | 67          |
| 1,3-Dinitrobenzene                      | 10          | 1.         | 330          | 67          |
| 4,6-Dinitro-2-methylphenol              | 25          | 5.         | 830          | 170         |
| 2,4-Dinitrophenol                       | 60          | 20         | 2000         | 670         |
| 2,4-Dinitrotoluene                      | 10          | 1.         | 330          | 67          |
| 2,6-Dinitrotoluene                      | 10          | 1.         | 330          | 33          |
| Di-n-octylphthalate                     | 10          | 2.         | 330          | 67          |
| Ethylmethanesulfonate                   | 10          | 2.         | 330          | 67          |
| Fluoranthene                            | 10          | 1.         | 330          | 33          |
| Fluorene                                | 10          | 1.         | 330          | 33          |
| Hexachlorobenzene                       | 10          | 1.         | 330          | 33          |
| Hexachlorobutadiene                     | 10          | 1.         | 330          | 67          |
| Hexachlorocyclopentadiene               | 25          | 5.         | 670          | 170         |
| Hexachloroethane                        | 10          | 1.         | 330          | 33          |
| Hexachloropropene                       | 10          | 2.         | 330          | 100         |
| Indeno(1,2,3-cd)pyrene                  | 10          | 1.         | 330          | 33          |
| Isodrin                                 | 10          | 1.         | 330          | 33          |

Element B4 Revision No. 2 Date: 07/01/04 Page 29 of 43

Table B4-14 – Continued

Appendix IX Semivolatile Compounds by GC/MS (8270C)

|                           | Wat         | ters       | Soils**      |             |
|---------------------------|-------------|------------|--------------|-------------|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| sophorone                 | 10          | 1.         | 330          | 33          |
| sosafrole                 | 10          | 1.         | 330          | 67          |
| Methapyrilene             | 10          | 3.         | 330          | 100         |
| 3-Methylcholanthrene      | 10          | 2.         | 330          | 67          |
| Methylmethanesulfonate    | 10          | 1.         | 330          | 33          |
| 1-Methylnaphthalene       | 10          | 1.         | 330          | 33          |
| 2-Methylnaphthalene       | 10          | 1.         | 330          | 33          |
| Naphthalene               | 10          | 1.         | 330          | 33          |
| 1,4-Naphthoquinone        | 100         | 10         | 3300         | 830         |
| 1-Naphthylamine           | 25          | 5.         | 830          | 170         |
| 2-Naphthylamine           | 25          | 5.         | 830          | 170         |
| 2-Nitroaniline            | 10          | 1.         | 330          | 33          |
| 3-Nitroaniline            | 10          | 1.         | 330          | 67          |
| 4-Nitroaniline            | 10          | 1.         | 330          | 67          |
| Nitrobenzene              | 10          | 1.         | 330          | 33          |
| 2-Nitrophenol             | 10          | 1.         | 330          | 33          |
| 4-Nitrophenol             | 50          | 10         | 830          | 170         |
| 4-Nitroquinoline-1-oxide  | 100         | 20         | 1700         | 330         |
| n-Nitrosodiethylamine     | · 10        | 2.         | 330          | 67          |
| n-Nitrosodimethylamine    | 10          | 2.         | 330          | 67          |
| n-Nitrosodi-n-butylamine  | 10          | 2.         | 330          | 67          |
| n-Nitrosodi-n-propylamine | 10          | 1.         | 330          | 33          |
| n-Nitrosodiphenylamine¹   | 10          | 2.         | 330          | 33          |
| n-Nitrosomethylethylamine | 10          | 2.         | 330          | 67          |
| n-Nitrosomorpholine       | 10          | 2.         | 330          | 67          |
| n-Nitrosopiperidine       | 10          | 2.         | 330          | 67          |
| n-Nitrosopyrrolidine      | 10          | 2.         | 330          | 67          |
| 5-Nitro-o-toluidine       | 10          | 3.         | 830          | 170         |
| Pentachlorobenzene        | 10          | 2.         | 330          | 67          |
| Pentachloronitrobenzene   | 10          | 2.         | 330          | 67          |
| Pentachlorophenol         | 25          | 3.         | 830          | 170         |
| Phenacetin                | 10          | 2.         | 330          | 67          |

Element B4 Revision No. 2 Date: 07/01/04 Page 30 of 43

# Table B4-14 – Continued Appendix IX Semivolatile Compounds by GC/MS (8270C)

|                                | Waters      |            | Soils**      |             |
|--------------------------------|-------------|------------|--------------|-------------|
| Compound Name                  | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Phenanthrene                   | 10          | 1.         | 330          | 33          |
| Phenol                         | 10          | 1.         | 330          | 33          |
| 1,4-Phenylenediamine           | 200         | 60         | 6700         | 2500        |
| 2-Picoline                     | 10          | 2.         | 330          | 67          |
| Pronamide                      | 10          | 1.         | 330          | 33          |
| Pyrene                         | 10          | 1.         | 330          | 33          |
| Pyridine                       | 10          | 2.         | 330          | 67          |
| Safrole                        | 10          | 2.         | 330          | 67          |
| 1,2,4,5-Tetrachlorobenzene     | 10          | 2.         | 330          | 67          |
| 2,3,4,6-Tetrachlorophenol      | 10          | 2.         | 330          | 67          |
| Tetraethyldithiopyrophosphate  | 10          | 1.         | 330          | 67          |
| Thionazin                      | 10          | 2.         | 330          | 67          |
| o-Toluidine                    | 10          | 1.         | 330          | 67          |
| 1,2,4-Trichlorobenzene         | 10          | 1.         | 330          | 33          |
| 2,4,5-Trichlorophenol          | 10          | 1.         | 330          | 33          |
| 2,4,6-Trichlorophenol          | 10          | 1.         | 330          | 33          |
| O,O,O-Triethylphosphorothioate | 10          | 2.         | 330          | 67          |
| 1,3,5-Trinitrobenzene          | 20          | 5.         | 670          | 170         |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>&</sup>lt;sup>1</sup>*n*-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for *n*-Nitrosodiphenylamine represents the combined total of both compounds.

<sup>&</sup>lt;sup>2</sup>Aramite and a,a-dimethylphenethylamine can be determined upon request.

<sup>&</sup>lt;sup>3</sup>3-methylphenol and 4-methylphenol cannot be resolved under this analsis. The combined total of both compounds is reported as 4-methylphenol.

Element B4 Revision No. 2 Date: 07/01/04 Page 31 of 43

Table B4-15
TCL3.2 Semivolatiles by GC/MS (8270C)

|                              | Waters      |              | Soils**      |             |
|------------------------------|-------------|--------------|--------------|-------------|
| Compound Name                | LOQ* (µg/L) | MDL (µg/L)   | LOQ* (µg/kg) | MDL (µg/kg) |
| 1,2,4-Trichlorobenzene       | 10          | 1.           | 330          | 33          |
| 1,2-Dichlorobenzene          | 10          | 1.           | 330          | 33          |
| 1,3-Dichlorobenzene          | 10          | 1.           | 330          | 33          |
| 1,4-Dichlorobenzene          | 10          | 1.           | 330          | 33          |
| 2,2'-Oxybis(1-Chloropropane) | 25          | 1.           | 330          | 33          |
| 2,4,5-Trichlorophenol        | 10          | , 1 <u>.</u> | 330          | 33          |
| 2,4,6-Trichlorophenol        | 10          | 1.           | 330          | 33          |
| 2,4-Dichlorophenol           | 10          | 1.           | 330          | 33          |
| 2,4-Dimethylphenol           | 10          | 1.           | 330          | 33          |
| 2,4-Dinitrotoluene           | 10          | 1.           | 330          | 67          |
| 2,6-Dinitrotoluene           | 10          | 1.           | 330          | 33          |
| 2-Chloronaphthalene          | 10          | 1.           | 330          | 33          |
| 2-Chlorophenol               | 10          | 1.           | 330          | 33          |
| 2-Methylnaphthalene          | 10          | 1.           | 330          | 33          |
| 2-Methylphenol               | 10          | 1.           | 330          | 33          |
| 2-Nitroaniline               | 10          | 1.           | 330          | 33          |
| 2-Nitrophenol                | 10          | 1.           | 330          | 33          |
| 3,3'-Dichlorobenzidine       | 10          | 1.           | 670          | 67          |
| 3-Nitroaniline               | 10          | 1.           | 330          | 67          |
| 4,6-Dinitro-2-methylphenol   | 25          | 5.           | 830          | 170         |
| 4-Bromophenyl-phenylether    | 10          | 1.           | 330          | . 33        |
| 4-Chloro-3-methylphenol      | 10          | 1.           | 330          | 67          |
| 4-Chloroaniline              | 10          | 1.           | 330          | 33          |
| 4-Chlorophenyl-phenylether   | 10          | 1.           | 330          | 33          |
| 4-Methylphenol               | 10          | 2.           | 330          | 67          |
| 4-Nitroaniline               | 10          | 1.           | 330          | 67          |
| 4-Nitrophenol                | 50          | 10           | 830          | 170         |
| Acenaphthene                 | 10          | 1.           | 330          | 33          |
| Acenaphthylene               | 10          | 1.           | 330          | 33          |
| Anthracene                   | 10          | 1,           | 330          | 33          |
| Benzo(a)anthracene           | 10          | 1.           | 330          | 33          |
| Benzo(a)pyrene               | 10          | 1.           | 330          | 33          |
| Benzo(b)fluoranthene         | 10          | 1.           | 330          | 33          |
| Benzo(g,h,i)perylene         | 10          | 1.           | 330          | 33          |
| Benzo(k)fluoranthene         | 10          | 1.           | 330          | 33          |
| bis(2-Chloroethoxy)methane   | 10          | 1.           | 330          | 33          |

Element B4 Revision No. 2 Date: 07/01/04 Page 32 of 43

### Table B4-15 – Continued TCL3.2 Semivolatiles by GC/MS (8270C)

|                                     | Waters      |            | Soîls**      |             |
|-------------------------------------|-------------|------------|--------------|-------------|
| Compound Name                       | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| bis(2-Chloroethyl)ether             | 10          | 1.         | 330          | 33          |
| bis(2-Ethylhexyl)phthalate          | 10          | 2.         | 330          | 170         |
| Butylbenzylphthalate                | . 10        | 2.         | 330          | 67          |
| Carbazole                           | 10          | 1.         | 330          | 33          |
| Chrysene                            | 10          | 1.         | 330          | 33          |
| Dibenz(a,h)anthracene               | 10          | 1.         | 330          | 33          |
| Dibenzofuran                        | 10          | 1.         | 330          | 33          |
| Diethylphthalate                    | 10          | 2.         | 330          | 67          |
| Dimethylphthalate                   | 10          | 2.         | 330          | 67          |
| Di-n-butylphthalate                 | 10          | 2.         | 330          | 67          |
| Di-n-octylphthalate                 | 10          | 2.         | 330          | 67          |
| Fluoranthene                        | 10          | 1.         | 330          | 33          |
| Fluorene                            | 10          | 1.         | 330          | 33          |
| Hexachlorobenzene                   | 10          | 1.         | 330          | 33          |
| Hexachlorobutadiene                 | 10          | 1.         | 330          | 67          |
| Hexachlorocyclopentadiene           | 25          | 5.         | 670          | 170         |
| Hexachloroethane                    | 10          | 1.         | 330          | 33          |
| Indeno(1,2,3-cd)pyrene              | 10          | 1.         | 330          | 33          |
| Isophorone                          | 10          | 1.         | 330          | . 33        |
| Naphthalene                         | 10          | 1.         | 330          | 33          |
| Nitrobenzene                        | 10          | 1.         | 330          | 33          |
| n-Nitroso-di-n-propylamine          | 10          | 1.         | 330          | 33          |
| n-Nitrosodiphenylamine <sup>1</sup> | 10          | 2.         | 330          | 33          |
| Pentachlorophenol                   | 25          | 3.         | 830          | 170         |
| Phenanthrene                        | 10          | 1.         | 330          | 33          |
| Phenol                              | 10          | 1.         | 330          | 33          |
| Pyrene                              | 10          | 1.         | 330          | 33          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

 $<sup>^{1}</sup>n$ -Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

Element B4 Revision No. 2 Date: 07/01/04 Page 33 of 43

Table B4-16
TCL4.2 Semivolatiles by GC/MS (8270C)

|                              | Waters      |            | Soils**      |             |
|------------------------------|-------------|------------|--------------|-------------|
| Compound Name                | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| 1,1'-Biphenyl                | 10          | 1.         | 330          | 33          |
| 2,2'-Oxybis(1-Chloropropane) | 25          | 1.         | 330          | 33          |
| 2,4,5-Trichlorophenol        | 10          | 1.         | 330          | 33          |
| 2,4,6-Trichlorophenol        | 10          | 1.         | 330          | 33          |
| 2,4-Dichlorophenol           | 10          | 1.         | 330          | 33          |
| 2,4-Dimethylphenol           | 10          | 1.         | 330          | 33          |
| 2,4-Dinitrophenol            | 60          | 20         | 2000         | 670         |
| 2,4-Dinitrotoluene           | 10          | 1.         | 330          | 67          |
| 2,6-Dinitrotoluene           | 10          | 1.         | 330          | 33          |
| 2-Chloronaphthalene          | 10          | 1.         | 330          | 33          |
| 2-Chlorophenol               | 10          | 1.         | 330          | . 33        |
| 2-Methylnaphthalene          | . 10        | 1.         | 330          | 33          |
| 2-Methylphenol               | 10          | 1.         | 330          | 33          |
| 2-Nitroaniline               | 10          | 1.         | 330          | 33          |
| 2-Nitrophenol                | 10          | 1.         | 330          | . 33        |
| 3,3'-Dichlorobenzidine       | 10          | 1.         | 670          | 67          |
| 3-Nitroaniline               | 10          | 1.         | 330          | 67          |
| 4,6-Dinitro-2-methylphenol   | 25          | 5.         | 830          | 170         |
| 4-Bromophenyl-phenylether    | 10          | 1.         | 330          | 33          |
| 4-Chloro-3-methylphenol      | 10          | 1.         | 330          | 67          |
| 4-Chloroaniline              | 10          | 1.         | 330          | 33          |
| 4-Chlorophenyl-phenylether   | 10          | 1.         | 330          | 33          |
| 4-Methylphenol               | 10          | 2.         | 330          | 67          |
| 4-Nitroaniline               | 10          | 1.         | 330          | 67          |
| 4-Nitrophenol                | 50          | 10         | 830          | 170         |
| Acenaphthene                 | 10          | 1.         | 330          | 33          |
| Acenaphthylene               | 10          | 1.         | 330          | 33          |
| Acetophenone                 | 10          | 2.         | 330          | 67          |
| Anthracene                   | 10          | 1.         | 330          | 33          |
| Atrazine                     | 10          | 1.         | 330          | 33          |
| Benzaldehyde                 | 10          | 1.         | 330          | 33          |
| Benzo(a)anthracene           | 10          | 1,         | 330          | 33          |
| Benzo(a)pyrene               | 10          | 1.         | 330          | 33          |
| Benzo(b)fluoranthene         | 10          | 1.         | 330          | 33          |
| Benzo(g,h,i)perylene         | 10          | 1.         | 330          | 33          |
| Benzo(k)fluoranthene         | 10          | 1.         | 330          | 33          |
| bis(2-Chloroethoxy)methane   | 10          | 1.         | 330          | 33          |
| bis(2-Chloroethyl)ether      | 10          | 1.         | 330          | 33          |

Element B4 Revision No. 2 Date: 07/01/04 Page 34 of 43

# Table B4-16 – Continued TCL4.2 Semivolatiles by GC/MS (8270C)

| Compound Name                       | Waters      |            | Soils**      |             |
|-------------------------------------|-------------|------------|--------------|-------------|
|                                     | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| bis(2-Ethylhexyl)phthalate          | 10          | 2.         | 330          | 170         |
| Butylbenzylphthalate                | 10          | 2.         | 330          | 67          |
| Caprolactam                         | 25          | 5.         | 830          | 170         |
| Carbazole                           | 10          | 1.         | 330          | 33          |
| Chrysene                            | 10          | 1.         | 330          | 33          |
| Dibenz(a,h)anthracene               | 10          | 1.         | 330          | 33          |
| Dibenzofuran                        | 10          | 1.         | 330          | 33          |
| Diethylphthalate                    | 10          | 2.         | 330          | 67          |
| Dimethylphthalate                   | 10          | 2.         | 330          | 67          |
| Di-n-butylphthalate                 | 10          | 2.         | 330          | 67          |
| Di-n-octylphthalate                 | . 10        | 2.         | 330          | 67          |
| Fluoranthene                        | 10          | 1.         | 330          | 33          |
| Fluorene                            | 10          | 1.         | 330          | 33          |
| Hexachlorobenzene                   | 10          | 1.         | 330          | 33          |
| Hexachlorobutadiene                 | 10          | 1.         | 330          | 67          |
| Hexachlorocyclopentadiene           | 25          | 5.         | 670          | 170         |
| Hexachloroethane                    | 10          | 1.         | 330          | 33          |
| Indeno(1,2,3-cd)pyrene              | 10          | 1.         | 330          | 33          |
| Isophorone                          | 10          | 1.         | 330          | 33          |
| Naphthalene                         | 10          | 1.         | 330          | 33          |
| Nitrobenzene                        | 10          | 1.         | 330          | 33          |
| n-Nitroso-di-n-propylamine          | 10          | 1.         | 330          | . 33        |
| n-Nitrosodiphenylamine <sup>1</sup> | 10          | 2.         | 330          | 33          |
| Pentachlorophenol                   | 25          | 3.         | 830          | 170         |
| Phenanthrene                        | 10          | 1.         | 330          | 33          |
| Phenol                              | 10          | 1.         | 330          | 33          |
| Pyrene                              | 10          | 1.         | 330          | 33          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

 $<sup>^{1}</sup>n$ -Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 2 Date: 07/01/04 Page 35 of 43

Table B4-17
Volatiles Halocarbons and Aromatics by GC (8021B)

|                           | Waters      |            |  |
|---------------------------|-------------|------------|--|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) |  |
| 1,1,1-Trichloroethane     | 1.          | 0.2        |  |
| 1,1,2,2-Tetrachloroethane | 1.          | 0.2        |  |
| 1,1,2-Trichloroethane     | 1.          | 0.2        |  |
| 1,1-Dichloroethane        | 1.          | 0.2        |  |
| 1,1-Dichloroethene        | 1.          | 0.2        |  |
| 1,2-Dichlorobenzene       | 1.          | 0.2        |  |
| 1,2-Dichloroethane        | 1.          | 0.2        |  |
| 1,2-Dichloropropane       | 1.          | 0.2        |  |
| 1,3-Dichlorobenzene       | 1.          | 0.2        |  |
| 1,4-Dichlorobenzene       | 1.          | 0.2        |  |
| Benzene                   | 1.          | 0.2        |  |
| Bromodichloromethane      | 1.          | 0.2        |  |
| Bromoform                 | 1.          | 0.2        |  |
| Bromomethane              | 5.          | 0.5        |  |
| Carbon Tetrachloride      | 1.          | 0.2        |  |
| Chlorobenzene             | 1.          | 0.2        |  |
| Chloroethane              | 1.          | 0.2        |  |
| Chloroform                | 1.          | 0.2        |  |
| Chloromethane             | 5.          | 0.5        |  |
| cis-1,2-Dichloroethene    | 1.          | 0.2        |  |
| cis-1,3-Dichloropropene   | 1.          | 0.2        |  |
| Dibromochloromethane      | 1.          | 0.2        |  |
| Dichlorodifluoromethane   | 2.          | 0.5        |  |
| Ethylbenzene              | 1.          | 0.2        |  |
| Methylene Chloride        | 2.          | 0.5        |  |
| Tetrachloroethene         | 1.          | 0.2        |  |
| Toluene                   | 1.          | 0.2        |  |
| trans-1,2-Dichloroethene  | 1.          | 0.2        |  |
| trans-1,3-Dichloropropene | 1.          | 0.2        |  |
| Trichloroethene           | 1.          | 0.2        |  |
| Trichlorofluoromethane    | 1.          | 0.2        |  |
| Vinyl Chloride            | 1.          | 0.2        |  |
| Xylene (total)            | 3.          | 0.6        |  |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 2 Date: 07/01/04 Page 36 of 43

**Table B4-18**Petroleum Analysis by GC (8021B)

| Compound Name        | Waters      |            | Soils**      |             |
|----------------------|-------------|------------|--------------|-------------|
|                      | LOQ* (µg/L) | MDL (µg/L) | LOQ* (mg/kg) | MDL (mg/kg) |
| Benzene              | 1.          | 0.2        | 5.           | 2.          |
| Ethylbenzene         | 1.          | 0.2        | 5.           | 2.          |
| Methyl t-butyl ether | 1.          | 0.3        | 20           | 5.          |
| Naphthalene          | 5.          | 1.         | 20           | 10          |
| Toluene              | 1.          | 0.2        | 5.           | 2.          |
| Total Xylene         | 3.          | 0.6        | 15           | 5.          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and my not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 37 of 43

### Table B4-19 TPH GRO/DRO by GC (8015B)

|               | Waters      |            | Waters       |             | So | ils** |
|---------------|-------------|------------|--------------|-------------|----|-------|
| Compound Name | LOQ* (mg/L) | MDL (mg/L) | LOQ* (mg/kg) | MDL (mg/kg) |    |       |
| TPH-DRO       | 0.1         | 0.1        | 7.           | 4.          |    |       |
| TPH-GRO       | 0.05        | 0.02       | 1.           | 0.2         |    |       |

NOTE: MDLs listed are higher than determined MDLs. This is because the method sums the total detectable area under the chromatographic plot in region of interest, instead of actual fuel peak area as the respective fuel.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 38 of 43

**Table B4-20**Pesticide/PCB Priority Pollutant Compound List by GC (8081A/8082)

|                     | Wa          | ters       | So           | Soils**     |  |
|---------------------|-------------|------------|--------------|-------------|--|
| Compound Name       | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |  |
| 4,4-DDD             | 0.02        | 0.004      | 1.7          | 0.58        |  |
| 4,4-DDE             | 0.02        | 0.004      | 1.7          | 0.33        |  |
| 4,4-DDT             | 0.02        | 0.004      | 1,7          | 0.33        |  |
| Aldrin              | 0.01        | 0.002      | 1.5          | 0.51        |  |
| alpha-BHC           | 0.01        | 0.002      | 0.83         | 0.17        |  |
| beta-BHC            | 0.04        | 0.012      | 0.83         | 0.17        |  |
| Chlordane           | 0.5         | 0.07       | 17           | 4.          |  |
| delta-BHC           | 0.01        | 0.003      | 0.83         | 0.17        |  |
| Dieldrin            | 0.02        | 0.005      | 1.7          | 0.33        |  |
| Endosulfan I        | 0.02        | 0.005      | 1.3          | 0.44        |  |
| Endosulfan II       | 0.01        | 0.004      | 1.7          | 0.33        |  |
| Endosulfan sulfate  | 0.027       | 0.009      | 1.7          | 0.33        |  |
| Endrin              | 0.02        | 0.004      | 1.7          | 0.5         |  |
| Endrin aldehyde     | 0.1         | 0.02       | 3.           | 1.          |  |
| gamma-BHC (Lindane) | 0.01        | 0.002      | 0.83         | 0.17        |  |
| Heptachlor          | 0.01        | 0.002      | 0.83         | 0.17        |  |
| Heptachlor epoxide  | 0.01        | 0.002      | 0.83         | 0.17        |  |
| Methoxychlor        | 0.18        | 0.06       | 12           | 4.          |  |
| PCB-1016            | 0.6         | 0.2        | 17           | 3,3         |  |
| PCB-1221            | 1.2         | 0.4        | 30           | 10          |  |
| PCB-1232            | 0.5         | 0.1        | 17           | 4.3         |  |
| PCB-1242            | 0.6         | 0.2        | 17           | 4.          |  |
| PCB-1248            | 0.9         | 0.3        | 18           | 6.          |  |
| PCB-1254            | 0.6         | 0.2        | 17           | 3.3         |  |
| PCB-1260            | 0.6         | 0.3        | 17           | 3.3         |  |
| Toxaphene           | 1.          | 0.3        | 33           | 11          |  |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 2 Date: 07/01/04 Page 39 of 43

**Table B4-21**Appendix IX Organochlorine Pesticides/PCBs by GC (8081A/8082)

|                     | Wa          | ters       | So           | Soils**     |  |
|---------------------|-------------|------------|--------------|-------------|--|
| Compound Name       | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |  |
| 4,4-DDD             | 0.02        | 0.004      | 1.7          | 0.58        |  |
| 4,4-DDE             | 0.02        | 0.004      | 1.7          | 0.33        |  |
| 4,4-DDT             | 0.02        | 0.004      | 1.7          | 0.33        |  |
| Aldrin              | 0.01        | 0.002      | 1.5          | 0.51        |  |
| alpha-BHC           | 0.01        | 0.002      | 0.83         | 0.17        |  |
| beta-BHC            | 0.04        | 0.012      | 0.83         | 0.17        |  |
| Chlordane           | 0.5         | 0.07       | 17           | 4.          |  |
| delta-BHC           | 0.01        | 0.003      | 0.83         | 0.17        |  |
| Dieldrin            | 0.02        | 0.005      | 1.7          | 0.33        |  |
| Endosulfan I        | . 0.01      | 0.004      | 1.3          | 0.44        |  |
| Endosulfan II       | 0.02        | 0.005      | 1.7          | 0.33        |  |
| Endosulfan sulfate  | 0.027       | 0.0090     | 1.7          | 0.33        |  |
| Endrin              | 0.02        | 0.004      | 1.7          | 0.5         |  |
| Endrin aldehyde     | 0.1         | 0.02       | 3.           | 1.          |  |
| gamma-BHC (Lindane) | 0.01        | 0.002      | 0.83         | 0.17        |  |
| Heptachlor          | 0.01        | 0.002      | 0.83         | 0.17        |  |
| Heptachlor epoxide  | 0.01        | 0.002      | 0.83         | 0.17        |  |
| Kepone              | 0.2         | 0.07       | 7.           | 2.3         |  |
| Methoxychlor        | 0.1         | 0.02       | 12           | 4.          |  |
| PCB-1016            | 0.5         | 0.1        | 17           | 3.3         |  |
| PCB-1221            | 1.2         | 0.4        | 30           | 10          |  |
| PCB-1232            | 0.5         | 0.1        | 17           | 4.3         |  |
| PCB-1242            | 0.6         | 0.2        | 17           | 4.          |  |
| PCB-1248            | 0.9         | 0.3        | 18           | 6.          |  |
| PCB-1254            | 0.6         | 0.2        | 17           | 3.3         |  |
| PCB-1260            | . 0.6       | 0.3        | 17           | 3.3         |  |
| Toxaphene           | 1.          | 0.3        | 33           | 11          |  |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 2 Date: 07/01/04 Page 40 of 43

Table B4-22
Appendix IX Organphosphate Pesticides/PCBs by GC (8141A)

|                           | Wai         | ters       | Soils**      |             |
|---------------------------|-------------|------------|--------------|-------------|
| Compound Name             | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Bolstar                   | 2.          | 0.4        | 67           | 22          |
| Coumaphos                 | 3.          | 0.64       | 67           | 22          |
| Demeton-O                 | 2.          | 0.4        | 67           | 22          |
| Demeton-S                 | 2.          | 0.4        | 67           | 22          |
| Diazinon                  | 2.          | 0.4        | 67           | -22         |
| Dichlorvos                | 2.          | 0.4        | 67           | 22          |
| Disulfoton                | 2.          | 0.4        | 75           | 25          |
| Dursban (Chlorpyrifos)    | 2.          | 0.4        | 67           | 22          |
| EPN                       | 4.          | 0.8        | 67           | 22          |
| Ethion                    | 2.          | 0.4        | 67           | 22          |
| Ethoprop                  | 2.          | 0.4        | 67           | 22          |
| Ethyl parathion           | 2.          | 0.4        | 67           | 22          |
| Famphur                   | 2.          | 0.5        | 67           | 22          |
| Fensulfothion             | 4.          | 0.9        | 67           | 22          |
| Fenthion                  | 2.          | 0.4        | 67           | 22          |
| Guthion (Azinphos-methyl) | 4.          | 0.8        | 67           | 22          |
| Malathion                 | 2.          | 0.4        | 67           | 22          |
| Merphos                   | 2.          | 0.4        | 67           | 22          |
| Methyl parathion          | 2.          | 0.4        | 67           | 22          |
| Mevinphos                 | 2.          | 0.4        | 67           | 22          |
| Naled                     | 3.          | 0.6        | 67           | 22          |
| Phorate                   | 2.          | 0.4        | 67           | 22          |
| Ronnel                    | 2.          | 0.4        | 67           | 22          |
| Stirophos                 | 2.          | 0.4        | 67           | 22          |
| Tokuthion                 | 2.          | 0.4        | 67           | 22          |
| Trichloronate             | 2.          | 0.4        | 67           | 22          |
| Trithion                  | 2.          | 0.4        | 67           | 22          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 2 Date: 07/01/04 Page 41 of 43

Table B4-23
TCL Pesticides/PCBs by GC
(OLM03.2 and OLM04.2 lists)

|                    | Waters      |            | So           | ils**       |
|--------------------|-------------|------------|--------------|-------------|
| Compound Name      | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| 4,4'-DDD           | 0.02        | 0.004      | 1.7          | 0.58        |
| 4,4'-DDE           | 0.02        | 0.004      | 1.7          | 0.33        |
| 4,4'-DDT           | 0.02        | 0.004      | 1.7          | 0.33        |
| Aldrin             | 0.01        | 0.002      | 1.5          | 0.51        |
| alpha-BHC          | 0.01        | 0.002      | 0.83         | 0.17        |
| alpha-Chlordane    | 0.01        | 0.002      | 0.83         | 0.17        |
| beta-BHC           | 0.04        | 0.012      | 0.83         | 0.17        |
| delta-BHC          | 0.01        | 0.003      | 0.83         | 0.17        |
| Dieldrin           | 0.02        | 0.005      | 1.7          | 0,33        |
| Endosulfan I       | 0.01        | 0.004      | 1,3          | 0,44        |
| Endosulfan II      | 0.02        | 0.005      | 1.7          | 0.33        |
| Endosulfan sulfate | 0.027       | 0.009      | 1.7          | 0.33        |
| Endrin             | 0.02        | 0.004      | 1.7          | 0.5         |
| Endrin aldehyde    | 0.1         | 0.020      | 3.           | 1.          |
| Endrin ketone      | 0.02        | 0.004      | 1.7          | 0.33        |
| gamma-BHC/Lindane  | 0.01        | 0.002      | 0.83         | 0.17        |
| gamma-Chlordane    | 0.01        | 0.002      | 0.9          | 0.3         |
| Heptachlor         | 0.01        | 0.002      | 0.83         | 0.17        |
| Heptachlor epoxide | 0.01        | 0.002      | 0.83         | 0.17        |
| Methoxychlor       | 0.18        | 0.06       | 12           | 4.          |
| PCB-1016           | 0.6         | 0.2        | 17           | 3.3         |
| PCB-1221           | 1.2         | 0.4        | 30           | 10          |
| PCB-1232           | 0.5         | 0.1        | 17           | 4.3         |
| PCB-1242           | 0.6         | 0.2        | 17           | 4.          |
| PCB-1248           | 0.9         | 0.3        | 18           | 6.          |
| PCB-1254           | 0.6         | 0.2        | 17           | 3.3         |
| PCB-1260           | 0.6         | 0.3        | 17           | 3.3         |
| Toxaphene          | 1.          | 0.3        | 33           | 11          |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 42 of 43

### **Table B4-24**Herbicides by GC (8151A)

|                      | War         | Waters     |              | ls**        |
|----------------------|-------------|------------|--------------|-------------|
| Compound Name        | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| 2,4,5-T              | 0.05        | 0.01       | 1.7          | 0.5         |
| 2,4,5-TP             | 0.05        | 0.01       | 1.7          | 0.5         |
| 2,4-D                | 0.5         | 0.1        | 17           | 5.          |
| 2,4-DB               | 1.          | 0.3        | 17           | 5.          |
| 2,4-DP (Dichlorprop) | 0.5         | 0.1        | 17           | 5.          |
| Dalapon              | 1.25        | 0.25       | 60           | 20          |
| Dicamba              | 0.3         | 0.06       | 3.           | 1.          |
| Dinoseb              | 0.5         | 0.1        | 8.3          | 1.7         |
| МСРА                 | 200         | 50         | 15000        | 3000        |
| MCPP                 | 200         | 50         | 2500         | 600         |
| Pentachlorophenol    | 0.05        | 0.01       | 1.7          | 0.33        |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B4 Revision No. 2 Date: 07/01/04 Page 43 of 43

### Table B4-25 PAHs by HPLC (8310)

|                        | Wat         | ers        | So           | ils**       |
|------------------------|-------------|------------|--------------|-------------|
| Compound Name          | LOQ* (µg/L) | MDL (µg/L) | LOQ* (µg/kg) | MDL (µg/kg) |
| Acenaphthene           | 8.          | 0.8        | 4.           | 0.6         |
| Acenapthylene          | 8.          | 0.8        | 4.           | 0.6         |
| Anthracene             | 0.1         | 0.02       | 0.08         | 0.009       |
| Benzo(a)anthracene     | 0.05        | 0.01       | 0.1          | 0.02        |
| Benzo(a)pyrene         | 0.05        | 0.01       | 0.2          | 0.03        |
| Benzo(b)fluoranthene   | 0.1         | 0.02       | 0.2          | 0.04        |
| Benzo(g,h,i)perylene   | 0.3         | 0.05       | 0.2          | 0.04        |
| Benzo(k)fluoranthene   | 0.05        | 0.01       | 0.1          | 0.02        |
| Chrysene               | 0.2         | 0.04       | 0.2          | 0.03        |
| Dibenzo(a,h)anthracene | 0.1         | 0.02       | 0.08         | 0.02        |
| Fluoranthene           | 0.1         | 0.02       | 0.08         | 0.02        |
| Fluorene               | 0.4         | 0.09       | 0.4          | 0.06        |
| Indeno(1,2,3-cd)pyrene | 0.2         | 0.04       | 0.2          | 0.04        |
| Naphthalene            | 6.          | 0.7        | 5.           | 0.7         |
| Phenanthrene           | 0.2         | 0.04       | 0.2          | 0.02        |
| Pyrene                 | 0.4         | 0.09       | 0.4          | 0.05        |

<sup>\*</sup>Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

<sup>\*\*</sup>Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

Element B5 Revision No. 2 Date: 07/01/04 Page 1 of 36

#### **B5.** Quality Control

The particular types and frequencies of quality control checks analyzed with each sample are defined in *USEPA SW-846 3<sup>rd</sup> Edition, Update III, 1996*, and *Methods for the Chemical Analysis of Waters and Wastes, USEPA, 600/4-79-020*. The quality control checks routinely performed during sample analysis include blanks, laboratory control samples, surrogates, duplicates, internal standards, and matrix spikes. In addition to these checks, some inorganic analyses employ serial dilutions and interference check samples.

Blanks (method, preparation) – Blanks are an analytical control consisting of a volume of deionized, distilled laboratory water for water samples, or a purified solid matrix for soil/sediment samples. (Metals use a digested reagent blank with soils.) They are treated with the same reagents, internal standards, and surrogate standards and carried through the entire analytical procedure. The blank is used to define the level of laboratory background contamination.

Laboratory Control Samples (LCS) or Reference materials — Aqueous and solid control samples of known composition are analyzed using the same sample preparation, reagents, and analytical methods employed for the sample. These materials may be purchased from NIST or commercial supply houses either as neat compounds or as solutions with certified concentrations, or prepared in the technical department. The accuracy and quality of the purchased standards are documented on certificates provided by the supply houses. Certificates are maintained on file in the laboratory. The accuracy information determined from reference materials and laboratory control samples is valuable because variables specific to sample matrix are eliminated. The acceptance criteria for this type of quality control is either dictated by the agency from whom the material is obtained or by statistical analysis of past information generated in the technical department. A LCS is analyzed with every sample preparation batch to demonstrate accuracy of the procedure and process control.

Element B5 Revision No. 2 Date: 07/01/04 Page 2 of 36

<u>Surrogates</u> (used for organic analysis only) – Each sample, matrix spike, matrix spike duplicate, and blank are spiked with surrogate compounds prior to purging and extraction in order to monitor preparation and analysis. Surrogates are used to evaluate analytical efficiency by measuring recovery. The recovery data is compared to method stipulated or statistically generated limits.

<u>Duplicates</u> (matrix or LCS spike duplicate – organics and inorganics; duplicate-inorganics) – A second aliquot of a matrix/sample is analyzed at the same time as the original sample in order to determine the precision of the method. The relative percent difference (RPD) between the two determinations is calculated and compared to values prescribed by the EPA or the laboratory's statistically generated limits.

Internal Standards (used for GC/MS and some GC analysis) — Internal standards are compounds added to every standard, blank, LCS, matrix spike, matrix spike duplicate, and sample at a known concentration, prior to analysis. The peak areas of the internal standards are used for internal standard quantitation as well as monitoring changes in the instrument response that may adversely affect quantification of target compounds.

Matrix Spikes – Matrix spikes are samples fortified with a target analyte and subjected to the entire analytical procedure. The recovery of the analyte(s) is calculated and indicates the appropriateness of the method for the matrix. The matrix spike and its duplicate is a pair of fortified samples from the same source. Analysis of the matrix spike duplicates yields precision and accuracy information. The acceptance criteria for percent recovery of spiked samples is prescribed by the EPA or determined by statistical analysis of historical data generated in the technical department.

<u>Serial Dilutions</u> (used for inorganics GFAA, ICP, and ICP/MS only) – If the analyte concentration is sufficiently high, an analysis of a five-fold dilution must agree within 10% of the original determination. If the dilution analysis is not within 10%, a chemical or physical interference effect should be suspected.

Element B5 Revision No. 2 Date: 07/01/04 Page 3 of 36

Interference Check Sample (ICP and ICP/MS) – To verify interelement and background correction factors a solution containing both interfering and analyte elements of known concentration is analyzed at the beginning and end of each analysis run or a minimum of twice per 8 hours.

Second Source Check – A second source check is analyzed using either the LCS or an ICV (Initial Calibration Verification). The second source is a standard that is made from a solution or neat purchased from a different vendor than that used for the calibration standards. For some organic custom mixes, the same vendor but a different lot and preparation is used. This ensures that potential problems with a vendor supply would be evident in the analysis. Some areas of the lab may use the continuing calibration verification standards as a second source from the initial calibration.

The results of all quality control samples are entered into the LIMS in the same way as the results of client samples. The computer is programmed to compare the individual values with the acceptance limits (statistically determined or method specified) and inform the analyst if the results of the quality control tests are in or out of specification. If the results are not within the acceptance criteria, corrective action suitable to the situation must be taken. This may include, but is not limited to, checking calculations, examining other quality control analyzed with the same batch of samples, qualifying results with a comment stating the observed deviation, and reanalysis of the samples in the batch. In addition, computerized reports on the results for all quality control analyses (including mean and standard deviation) are generated monthly. These are used by the Quality Assurance Department to check for trends that may indicate method bias. Control charts are plotted via computer and may be accessed at any time by all analysts.

Element B5 Revision No. 2 Date: 07/01/04 Page 4 of 36

The following tables list the specific QC used for each method and the applicable QC windows. These windows are generated statistically and are subject to change. Statistical limits are determined for recovery and relative percent difference (RPD) data using historical data (minimum of 20 data points) and applying a 99% confidence interval around the mean. The limits are generated every 6 months for SW-846 methods and annually for other methods, and updated as needed. The tables list the full list of analytes for a method. Sublists (TCL, PPL, etc.) may be reported based on the clients requirements. See Element B4 for the particular analytes associated with a regulatory list.

Element B5 Revision No. 2 Date: 07/01/04 Page 5 of 36

## Table B5-1 Quality Control Inorganics

| Type                                                                    | Acceptance Limits (%)                                                                                                                                                                                                                                                                                                  | Frequency                                                                                                                 | Corrective Action                                                                      |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Matrix Spikes:                                                          | See Table B5-2<br>See Table B5-2A for ICP/MS                                                                                                                                                                                                                                                                           | Each group of samples of similar matrix/level (≤20) each method                                                           | Analyze post-digestion<br>spike sample                                                 |
| Matrix Spike Duplicate (RPD):                                           | ±20% RPD                                                                                                                                                                                                                                                                                                               | Each group of samples of similar matrix/level (≤20) each method                                                           | Analyze post-digestion spike sample if not already run for MS, flag the data           |
| Duplicates (RPD):                                                       | ±20% RPD for sample values<br>≥5× LOQ                                                                                                                                                                                                                                                                                  | Each group of samples of similar matrix/level (≤20) each method                                                           | Flag the data                                                                          |
| Blanks:<br>Initial Calibration (ICB)<br>Continuing Calibration<br>(CCB) | ICP and ICP/MS: <3× IDL or blank <1/10 conc. of action level and samples not ±10% of action level GFAA and CVAA: <loq< td=""><td>Each element immediately after calibration verification at 10% frequency or every 2 hours (beginning and end of run min.)</td><td>Correct problem, recalibrate, and rerun</td></loq<> | Each element immediately after calibration verification at 10% frequency or every 2 hours (beginning and end of run min.) | Correct problem, recalibrate, and rerun                                                |
| Preparation Blank (PB)                                                  | ≤LOQ                                                                                                                                                                                                                                                                                                                   | Each SDG or batch<br>(≤20 samples)                                                                                        | Redigest and reanalyze blank and associated samples if sample result <20× blank result |
| Serial Dilutions<br>(excluding Hg):                                     | Within ±10% of the original determination                                                                                                                                                                                                                                                                              | Each group (≤20)<br>of similar<br>matrix/level                                                                            | Flag the data                                                                          |
| Interference Check<br>Sample (ICP and<br>ICP/MS only):                  | ±20% of the true value for the analytes                                                                                                                                                                                                                                                                                | Each element after Initial Calibration Verification at beginning and end of the run or min. of 2× per 8 hour              | Recalibrate the instrument                                                             |
| Laboratory Control<br>Sample:                                           | See Table B5-2<br>See Table B5-2A for ICP/MS                                                                                                                                                                                                                                                                           | Each SDG or batch (≤20 samples), each method                                                                              | Redigest and reanalyze LCS and associated samples                                      |

Element B5 Revision No. 2 Date: 07/01/04 Page 6 of 36

### Table B5-1 - Continued

#### Quality Control Metals

| Туре                  | Acceptance Limits (%)                                           | Frequency                                        | Corrective Action |
|-----------------------|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
| Post Digestion Spike: | ICP and ICP/MS:<br>75% to 125%<br>GFAA and CVAA:<br>85% to 115% | When matrix spikes are outside 75% to 125% range | Flag the data     |

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change. This criteria is for TAL, PPL, and Appendix IX metals.

Page 7 of 36

**Table B5-2**Statistical Acceptance Limits for Metals

|                      | Wat          | ers        | So           | ils        |
|----------------------|--------------|------------|--------------|------------|
| Analyte              | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |
| Aluminum             | 93-112       | 75-125     | 97-177       | 75-125     |
| Antimony             | 94-112       | 75-125     | 7-186        | 75-125     |
| Arsenic              | 92-109       | 86-119     | 90-110       | 75-112     |
| Barium               | 93-109       | 82-113     | 96-117       | 75-125     |
| Beryllium            | 92-109       | 91-117     | 89-111       | 89-114     |
| Cadmium              | 93-111       | 87-117     | 88-106       | 75-125     |
| Calcium              | 93-113       | 78-122     | 97-119       | 75-125     |
| Chromium             | 95-112       | 86-118     | 92-114       | 75-125     |
| Cobalt               | 95-109       | 91-112     | 88-107       | 79-114     |
| Copper               | 92-110       | 89-119     | 90-111       | 75-125     |
| Iron                 | 91-114       | 75-125     | 57-203       | 75-125     |
| Lead <sup>1</sup>    | 80-120       | 80-120     | 81-139       | 80-120     |
| Magnesium            | 93-110       | 75-125     | 93-128       | 75-125     |
| Mercury <sup>2</sup> | 80-120       | 80-120     | 84-117       | 80-120     |
| Nickel               | 93-110       | 91-111     | 89-107       | 75-125     |
| Potassium            | 80-120       | 75-125     | 96-132       | 75-125     |
| Selenium             | 91-111       | 75-125     | 94-114       | 81-112     |
| Silver               | 93-110       | 75-125     | 84-116       | 75-125     |
| Sodium               | 87-117       | 75-125     | 48-130       | 75-125     |
| Thallium             | 92-107       | 97-108     | 96-112       | 78-109     |
| Vanadium             | 96-109       | 95-112     | 83-146       | 75-125     |
| Zinc                 | 94-112       | 80-120     | 91-110       | 75-125     |

<sup>&</sup>lt;sup>1</sup>Analyzed by GFAA

All other elements analyzed by ICP.

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

The acceptance limits above pertain to the TAL, PPL and Appendix IX lists.

<sup>&</sup>lt;sup>2</sup>Analyzed by Cold Vapor

Element B5 Revision No. 2 Date: 07/01/04 Page 8 of 36

**Table B5-2A**Acceptance Limits for ICP/MS

|            | Wat          | ers        | Soils        |            |
|------------|--------------|------------|--------------|------------|
| Analyte    | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |
| Aluminum   | 80-120       | 75-125     | 66-134       | 75-125     |
| Antimony   | 80-120       | 75-125     | 1-210        | 75-125     |
| Arsenic    | 80-120       | 75-125     | 68-132       | 75-125     |
| Barium     | 80-120       | 75-125     | 77-123       | 75-125     |
| Beryllium  | 80-120       | 75-125     | 76-124       | 75-125     |
| Cadmium    | 80-120       | 75-125     | 77-123       | 75-125     |
| Calcium    | 80-120       | 75-125     | 72-128       | 75-125     |
| Chromium   | 80-120       | 75-125     | 78-121       | 75-125     |
| Cobalt     | 80-120       | 75-125     | 80-120       | 75-125     |
| Copper     | 80-120       | 75-125     | 76-125       | 75-125     |
| Iron       | 80-120       | 75-125     | 50-150       | 75-125     |
| Lead       | 80-120       | 75-125     | 74-126       | 75-125     |
| Magnesium  | 80-120       | 75-125     | 60-140       | 75-125     |
| Manganese  | 80-120       | 75-125     | 78-122       | 75-125     |
| Molybdenum | 80-120       | 75-125     | 77-123       | 75-125     |
| Nickel     | 80-120       | 75-125     | 78-122       | 75-125     |
| Potassium  | 80-120       | 75-125     | 55-146       | 75-125     |
| Selenium   | 80-120       | 75-125     | 74-126       | 75-125     |
| Silver     | 80-120       | 75-125     | 60-180       | 75-125     |
| Sodium     | 80-120       | 75-125     | 60-140       | 75-125     |
| Strontium  | 80-120       | 75-125     | 73-127       | 75-125     |
| Thallium   | 80-120       | 75-125     | 57-143       | 75-125     |
| Tin        | 80-120       | 75-125     | 75-125       | 75-125     |
| Titanium   | 80-120       | 75-125     | 56-145       | 75-125     |
| Vanadium   | 80-120       | 75-125     | 68-132       | 75-125     |
| Zinc       | 80-120       | 75-125     | 76-123       | 75-125     |

Acceptance limits are statistically derived or method-specified, whichever is more stringent.

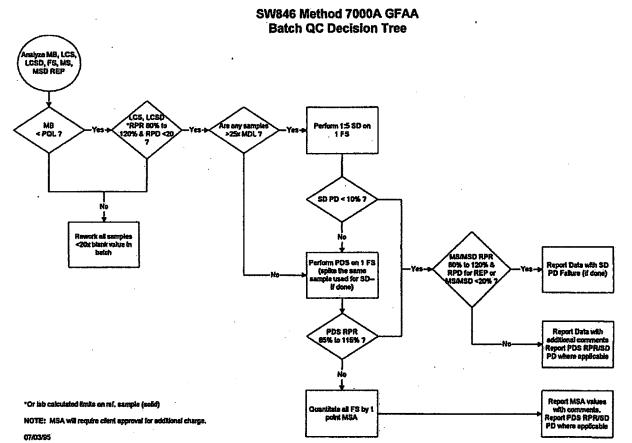



Figure B5-1

Element B5
Revision No. 2
Date: 07/01/04
Page 9 of 36

Element B5 Revision No. 2 Date: 07/01/04 Page 10 of 36

## Table B5-3 Quality Control Miscellaneous Chemistry

| Parameter                                                      | Acceptance Limits (%)                     | Frequency                                 | Corrective Action                                                          |
|----------------------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|
| Moisture:                                                      |                                           |                                           |                                                                            |
| LCS/LCSD:                                                      | See Table B5-4                            | Each group (≤20) of samples               | Batch is repeated                                                          |
| Duplicate:                                                     | ≤15%                                      | Each group (≤20) of samples               | Ensure that LCS meets acceptance criteria                                  |
| Cyanide, total:                                                |                                           |                                           |                                                                            |
| Blanks:                                                        |                                           |                                           |                                                                            |
| ICB:                                                           | ≤LOQ ·                                    | After every calibration                   | Recalibrate                                                                |
| CCB:                                                           | ≤LOQ                                      | After each CCV, which is every 10 samples | Reanalyze bracketed sample                                                 |
| PB:                                                            | ≤LOQ                                      | Each group (≤20) of samples               | Batch is repeated                                                          |
| LCS:<br>(LCSD when requested,<br>or if there is not sufficient | See Table B5-4                            | Each group (≤20) of samples               | Batch is repeated                                                          |
| volume for Matrix QC)                                          | LCSD ≤20% RPD                             |                                           |                                                                            |
| MS:                                                            | See Table B5-4                            | Every 10 samples                          | Post digestion spike is performed, MSA is performed for CN by SW-846 9012A |
| Duplicates:                                                    | ≤20%                                      | Every 10 samples                          | Ensure that LCS meets acceptance criteria                                  |
| Phenolics, total:                                              |                                           |                                           |                                                                            |
| Blanks:                                                        | ≤LOQ                                      | Each group (≤20) of samples               | Batch is repeated                                                          |
| LCS:<br>(LCSD when requested)                                  | See Table B5-4<br>LCSD ≤20% RPD           | Each group (≤20) of samples               | Batch is repeated                                                          |
| MS/MSD:                                                        | See Table B5-4<br>MSD ≤20% RPD            | Every 10 samples                          | Ensure that LCS meets acceptance criteria                                  |
| Duplicates:                                                    | ≤20%                                      | Every 10 samples                          | Ensure that LCS meets acceptance criteria                                  |
| Sulfide, total:                                                |                                           |                                           |                                                                            |
| Blanks:                                                        | ≤LOQ                                      | Each group (≤20) of samples               | Batch is repeated                                                          |
| LCS:                                                           | See Table B5-4                            | Each group (≤20) of samples               | Batch is repeated                                                          |
| (LCSD when requested) MS/MSD:                                  | LCSD ≤20% RPD See Table B5-4 MSD ≤20% RPD | Each group (≤20) of samples               | Ensure that LCS meets acceptance criteria                                  |
| Duplicate:                                                     | ≤20% (statistically evaluated)            | Each group (≤20) of samples               | Ensure that LCS meets acceptance criteria                                  |

Element B5 Revision No. 2 Date: 07/01/04 Page 11 of 36

### Table B5-3 - Continued

### Quality Control Miscellaneous Chemistry

| Parameter                                | Acceptance Limits (%)               | Frequency                   | Corrective Action                         |
|------------------------------------------|-------------------------------------|-----------------------------|-------------------------------------------|
| TPH (418.1):                             |                                     |                             |                                           |
| Blanks:                                  | ≤LOQ                                | Each group (≤20) of samples | Batch is repeated                         |
| LCS:                                     | See Table B5-4<br>LCSD ≤20% RPD     | Each group (≤20) of samples | Batch is repeated                         |
| (LCSD when requested)                    |                                     |                             | Ensure that LCS meets                     |
| MS/MSD:                                  | See Table B5-4<br>MSD ≤20% RPD      | Each group (≤20) of samples | acceptance criteria                       |
| Duplicates:                              | ≤34% wastewater<br>≤21% solid waste | Each group (≤20) of samples | Ensure that LCS meets acceptance criteria |
| Hexane Extractable<br>Materials (1664A): |                                     |                             |                                           |
| Blanks:                                  | ≤LOQ                                | Each group (≤20) of samples | Batch is repeated                         |
| LCS:                                     | See Table B5-4                      | Each group (≤20) of         | Batch is repeated                         |
| (LCSD when requested)                    | LCSD ≤20% RPD                       | samples                     |                                           |
| MS/MSD:                                  | See Table B5-4                      | Each group (≤20) of         | Ensure that LCS meets                     |
|                                          | MSD ≤20% RPD                        | samples                     | acceptance criteria                       |
| Duplicates:                              | ≤18%                                | Each group (≤20) of samples | Ensure that LCS meets acceptance criteria |
| TOC:                                     |                                     |                             |                                           |
| Blanks:                                  |                                     |                             |                                           |
| ICB:                                     | ≤LOQ                                | After every calibration     | Recalibrate                               |
| CCB:                                     | ≤LOQ                                | After every 10 injections   | Reanalyze bracketed sample                |
| <b>PB:</b>                               | ≤LOQ                                | Each group (≤20) of samples | Batch is repeated                         |
| LCS:                                     | See Table B5-4                      | Each group (≤20) of         | Batch is repeated                         |
| (LCSD when requested)                    | LCSD ≤20% RPD                       | samples                     |                                           |
| MS/MSD:                                  | See Table B5-4                      | Every 10 samples            | Ensure that LCS meets                     |
|                                          | MSD ≤20% RPD                        |                             | acceptance criteria                       |
| Duplicates:                              | ≤4%                                 | Every 10 samples            | Ensure that LCS meets acceptance criteria |

Element B5 Revision No. 2 Date: 07/01/04 Page 12 of 36

#### Table B5-3 - Continued

### Quality Control Miscellaneous Chemistry

| Parameter                  | Acceptance Limits (%)           | Frequency                      | Corrective Action                         |
|----------------------------|---------------------------------|--------------------------------|-------------------------------------------|
| TOX:                       |                                 |                                |                                           |
| Blanks:                    | ≤LOQ                            | Each group (≤20) of samples    | Batch is repeated                         |
| LCS: (LCSD when requested) | See Table B5-4<br>LCSD ≤20% RPD | Each group (≤20) of<br>samples | Batch is repeated                         |
| MS/MSD:                    | See Table B5-4<br>MSD ≤20% RPD  | Every 10 samples               | Ensure that LCS meets acceptance criteria |
| Duplicates:                | ≤20% solids                     | Every 10 samples for solids    | Ensure that LCS meets acceptance criteria |
| Total Nitrite/Nitrate:     |                                 |                                |                                           |
| Blanks:                    |                                 |                                |                                           |
| ICB:                       | ≤LOQ                            | After initial calibration      | Repeat calibration                        |
| PBW:                       | ≤LOQ                            | Each group (≤20) of samples    | Batch is repeated                         |
| LCS: (LCSD when requested) | See Table B5-4<br>LCSD ≤20% RPD | Each group (≤20) of samples    | Batch is repeated                         |
| MS/MSD:                    | See Table B5-4<br>MSD ≤20% RPD  | Each group (≲20) of<br>samples | Ensure that LCS meets acceptance criteria |
| Duplicates:                | ≤2%                             | Every 10 samples               | Ensure that LCS meets acceptance criteria |

Element B5 Revision No. 2 Date: 07/01/04 Page 13 of 36

Table B5-4
Quality Control
Statistical Acceptance Limits for Miscellaneous Chemistry

| Parameter             | Wat          | ters       | Soils        |            |
|-----------------------|--------------|------------|--------------|------------|
|                       | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |
| Cyanide, total        | 90-110       | 39-141     | 90-110       | 23-154     |
| HEM (1664A)           | 79-114       | 79-114     | N/A          | N/A        |
| Moisture              | N/Ä          | N/A        | 99-101       | N/A        |
| Phenolics, total      | 80-112       | 46-143     | 86-111       | 69-129     |
| Sulfide, total        | 90-105       | 72-120     | N/A          | N/A        |
| TOC                   | 85-111       | 57-138     | 65-127       | 71-136     |
| Total Nitrite/Nitrate | 90-110       | 90-110     | N/A          | N/A        |
| TOX                   | 90-110       | 30-164     | 60-120       | 40-139     |
| TPH (418.1)           | 54-113       | 39-132     | 66-124       | 38-146     |

Page 14 of 36

## Table B5-5 Quality Control Volatiles by GC/MS (8260B)

|                                                                                                              | Acceptance L                                                   | imits (%)                            |                                              |                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                                                                         | Waters                                                         | Soils                                | Frequency                                    | Corrective Action                                                                                                                                             |
| Surrogates: Toluene-d <sub>8</sub> Bromofluorobenzene 1,2-Dichloroethane-d <sub>4</sub> Dibromofluoromethane | 85-112<br>83-113<br>82-112<br>81-120                           | 70-130<br>70-128<br>70-121<br>70-129 | Each sample, MS,<br>MSD, LCS, and<br>blank   | Reanalyze sample if outside limits; if reanalysis confirms original, document on report and/or case narrative                                                 |
| Matrix Spikes:<br>Spike all compounds of<br>interest                                                         | See Table B5-6                                                 |                                      | Each group (≤20) of samples per matrix/level | Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.                                            |
| Laboratory Control<br>Samples:<br>Spike all compounds of<br>interest                                         | See Table B5-6                                                 |                                      | Each group (≤20) of samples per matrix/level | Reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported. |
| Matrix Spike Duplicates (RPD): Spike all compounds of interest                                               | ≤30% for waters                                                | and soils                            | Each group (≤20) of samples per matrix/level | Evaluated by analyst in relationship to other QC results                                                                                                      |
| Blanks:                                                                                                      | ≤LOQ for all com                                               | pounds                               | Once for each<br>12-hour time period         | Reanalyze blank and associated samples if blank outside limits                                                                                                |
| Internal Standards: Chlorobenzene-d <sub>5</sub> 1,4-Dichlorobenzene-d <sub>4</sub>                          | -50% to +100% of<br>standard area of<br>STD<br>RT Change ≤30 s | 12-hour                              | Each sample, MS,<br>MSD, LCS, and<br>blank   | Reanalyze samples; if reanalysis confirms original, document on report or case narrative                                                                      |

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change. This criteria is for PPL, Appendix IX, and TCL lists.

Page 15 of 36

Table B5-6
Statistical Acceptance Limits for Volatiles by GC/MS (8260B)

|                             | Wat          | ers        | So           | Soils           |  |  |
|-----------------------------|--------------|------------|--------------|-----------------|--|--|
| Compound Name               | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%)      |  |  |
| 1,1,1,2-Tetrachloroethane   | 83-114       | 83-119     | 78-115       | 58-128          |  |  |
| 1,1,1-Trichloroethane       | 83-127       | 82-135     | 74-121       | 53-137          |  |  |
| 1,1,2,2-Tetrachloroethane   | 72-119       | 69-121     | 64-121       | 37-151          |  |  |
| 1,1,2-Trichloroethane       | 86-113       | 77-125     | 83-114       | 50-147          |  |  |
| 1,1-Dichloroethane          | 83-127       | 85-135     | 79-124       | 60-133          |  |  |
| 1,1-Dichloroethene          | 79-130       | 78-146     | 69-133       | 48-147          |  |  |
| 1,1-Dichloropropene         | 84-116       | 87-127     | 75-121       | 57-130          |  |  |
| 1,2,3-Trichlorobenzene      | 67-114       | 66-121     | 70-117       | 15-140          |  |  |
| 1,2,3-Trichloropropane      | 78-117       | 73-125     | 67-126       | 36-161          |  |  |
| 1,2,4-Trichlorobenzene      | 65-114       | 66-121     | 68-119       | 13-140          |  |  |
| 1,2,4-Trimethylbenzene      | 78-117       | 75-132     | 74-117       | 35-153          |  |  |
| 1,2-Dibromo-3-chloropropane | 59-120       | 53-125     | 49-127       | 29-147          |  |  |
| 1,2-Dibromoethane           | 81-114       | 78-120     | 77-114       | 61-125          |  |  |
| 1,2-Dichlorobenzene         | 81-112       | 82-117     | 81-114       | 49-126          |  |  |
| 1,2-Dichloroethane          | 77-132       | 73-136     | 76-126       | 57 <b>-</b> 137 |  |  |
| 1,2-Dichloropropane         | 80-117       | 81-121     | 78-119       | 60-129          |  |  |
| 1,3,5-Trimethylbenzene      | 78-116       | 77-124     | 72-118       | 29-153          |  |  |
| 1,3-Dichlorobenzene         | 81-114       | 79-123     | 76-112       | 45-130          |  |  |
| 1,3-Dichloropropane         | 84-119       | 82-121     | 80-117       | 61-129          |  |  |
| 1,4-Dichlorobenzene         | 84-116       | 81-122     | 81-113       | 45-129          |  |  |
| 2,2-Dichloropropane         | 79-123       | 78-134     | 72-123       | 53-135          |  |  |
| 2-Butanone                  | 45-154       | 42-140     | 31-147       | 24-149          |  |  |
| 2-Chloroethyl Vinyl Ether   | 60-129       | 1-172      | 70-120       | 48-134          |  |  |
| 2-Chlorotoluene             | 78-115       | 78-121     | 73-114       | 48-141          |  |  |
| 2-Hexanone                  | 47-150       | 44-140     | 41-144       | 27-149          |  |  |
| 4-Chlorotoluene             | 80-112       | 81-123     | 79-116       | 48-134          |  |  |
| 4-Methyl-2-pentanone        | 65-125       | 61-126     | 55-135       | 34-143          |  |  |
| Acetone                     | 22-179       | 12-153     | 29-165       | 9-178           |  |  |
| Acrolein                    | 28-146       | 25-144     | 55-128       | 14-143          |  |  |
| Acrylonitrile               | 64-126       | 56-123     | 63-123       | 47-125          |  |  |
| Benzene                     | 85-117       | 83-128     | 83-118       | 52-141          |  |  |
| Bromobenzene                | 80-118       | 83-121     | 77-113       | 52-131          |  |  |
| Bromochloromethane ·        | 63-125       | 60-130     | 53-134       | 38-136          |  |  |
| Bromodichloromethane        | 83-121       | 83-121     | 77-116       | 57-126          |  |  |
| Bromoform                   | 69-118       | 64-119     | 63-116       | 46-128          |  |  |

Element B5 Revision No. 2 Date: 07/01/04 Page 16 of 36

### Table B5-6 - Continued

### Statistical Acceptance Limits for Volatiles by GC/MS (8260B)

|                           | Wat          | ters       | Soils        |            |  |
|---------------------------|--------------|------------|--------------|------------|--|
| Compound Name             | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |
| Bromomethane              | 46-138       | 52-140     | 35-146       | 19-147     |  |
| Carbon Disulfide          | 73-143       | 77-155     | 70-129       | 37-147     |  |
| Carbon Tetrachloride      | 77-130       | 73-144     | 63-124       | 46-138     |  |
| Chlorobenzene             | 85-115       | 83-120     | 81-112       | 59-125     |  |
| Chloroethane              | 59-133       | 63-142     | 50-137       | 33-147     |  |
| Chloroform                | 86-124       | 82-131     | 81-117       | 57-135     |  |
| Chloromethane             | 69-136       | 70-148     | 44-139       | 21-155     |  |
| cis-1,2-Dichloroethene    | 84-117       | 83-126     | 83-118       | 57-131     |  |
| cis-1,3-Dichloropropene   | 78-114       | 76-117     | 80-113       | 50-129     |  |
| Dibromochloromethane      | 78-119       | 73-119     | 73-116       | 53-130     |  |
| Dibromomethane            | 87-117       | 83-120     | 80-116       | 61-123     |  |
| Dichlorodifluoromethane   | 56-172       | 57-201     | 1-166        | 1-179      |  |
| Ethylbenzene              | 82-119       | 82-129     | 82-115       | 40-143     |  |
| Hexachlorobutadiene       | 56-120       | 52-132     | 57-122       | 5-151      |  |
| Isopropylbenzene          | 80-120       | 81-130     | 79-117       | 48-138     |  |
| m+p-Xylene                | 84-120       | 82-130     | 82-117       | 40-143     |  |
| Methylene Chloride        | 80-128       | 79-133     | 81-121       | 59-135     |  |
| Naphthalene               | 61-116       | 59-124     | 59-123       | 2-142      |  |
| n-Butylbenzene            | 70-116       | 66-131     | 69-124       | 22-149     |  |
| n-Propylbenzene           | 78-119       | 78-131     | 72-124       | 31-151     |  |
| o-Xylene                  | 84-120       | 82-130     | 82-117       | 40-143     |  |
| p-isopropyltoluene        | 72-118       | 72-128     | 74-120       | 33-144     |  |
| sec-Butylbenzene          | 72-120       | 73-129     | 72-120       | 31-149     |  |
| Styrene                   | 84-117       | 76-126     | 79-116       | 46-137     |  |
| tert-Butylbenzene         | 74-114       | 76-128     | 74-120       | 44-148     |  |
| Tetrachloroethene         | 82-126       | 75-143     | 79-122       | 39-160     |  |
| Toluene                   | 85-115       | 83-127     | 81-116       | 45-142     |  |
| trans-1,2-Dichloroethene  | 81-124       | 82-133     | 77-124       | 54-135     |  |
| trans-1,3-Dichloropropene | 79-114       | 75-117     | 72-119       | 51-127     |  |
| Trichloroethene           | 87-117       | 75-135     | 81-114       | 47-140     |  |
| Trichlorofluoromethane    | 59-137       | 67-163     | 45-133       | 26-149     |  |
| Vinyl Chloride            | 71-129       | 70-151     | 48-135       | 23-154     |  |
| Xylene (Total)            | 84-120       | 82-130     | 82-117       | 40-143     |  |
| Allyl Chloride            | 40-136       | 45-143     | 39-144       | 29-140     |  |
| 2-Chloro-1,3-butadiene    | 71-142       | 74-151     | 72-128       | 51-135     |  |

Element B5 Revision No. 2 Date: 07/01/04 Page 17 of 36

#### Table B5-6 - Continued

### Statistical Acceptance Limits for Volatiles by GC/MS (8260B)

| Compound Name               | Wat          | ers        | Soils        |            |
|-----------------------------|--------------|------------|--------------|------------|
|                             | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |
| trans-1,4-Dichloro-2-butene | 50-140       | 36-143     | 55-134       | 36-143     |
| 1,2-Dichloroethene (Total)  | 84-117       | 83-126     | 83-118       | 57-131     |
| 1,4-Dioxane                 | 41-155       | 30-153     | 56-131       | 26-160     |
| Ethyl Methacrylate          | 77-118       | 74-120     | 70-121       | 36-140     |
| Isobutyl Alcohol            | 59-134       | 51-140     | 40-144       | 29-155     |
| Methacrylonitrile           | 79-124       | 70-124     | 70-131       | 56-133     |
| Methyl lodide               | 74-133       | 73-146     | 72-127       | 52-141     |
| Methyl Methacrylate         | 73-113       | 68-117     | 63-122       | 39-139     |
| Propianitrile               | 73-128       | 63-129     | 64-134       | 49-140     |
| Vinyl Acetate               | 69-182       | 74-187     | 63-179       | 1-228      |

Element B5 Revision No. 2 Date: 07/01/04 Page 18 of 36

## Table B5-7 Quality Control Semivolatiles by GC/MS (8270C)

|                                                                                                                                                  | Acceptance Limits (%)                                  |                                                          |                                                               |                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                                                                                                             | Waters                                                 | Soils                                                    | Frequency                                                     | Corrective Action                                                                                                                |
| Surrogates:  Nitrobenzene-d <sub>5</sub> 2-Fluorobiphenyl Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol    | 54-124<br>64-112<br>43-116<br>10-80<br>23-94<br>40-136 | 47-128<br>55-123<br>49-133<br>45-120<br>41-119<br>46-136 | Each sample, MS,<br>MSD, LCS, and blank                       | Repeat extraction and analysis; if reanalysis confirms originals, document on report and/or case narrative                       |
| Matrix Spikes:                                                                                                                                   | See Table B5-8 fo                                      | or acceptance                                            | Each group (≤20) of                                           | Evaluation in conjunction                                                                                                        |
| Spike all compounds of interest                                                                                                                  | limits                                                 |                                                          | samples per<br>matrix/level                                   | with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.                                         |
| Laboratory Control<br>Sample:                                                                                                                    | See Table B5-8 fo                                      | or acceptance                                            | Each group (≤20) of samples per matrix/level                  | Re-extract and reanalyze LCS and associated                                                                                      |
| Spike all compounds of interest                                                                                                                  |                                                        |                                                          |                                                               | samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported. |
| Matrix Spike Duplicates (RPD):                                                                                                                   | ≤30% for waters a                                      | and soils                                                | Each group (≤20) of samples per matrix/level                  | Evaluated by analyst in relationship to other QC results                                                                         |
| Same as for matrix spikes                                                                                                                        | ļ.,                                                    |                                                          |                                                               |                                                                                                                                  |
| Blanks:                                                                                                                                          | ≤LOQ for all comp                                      | oounds                                                   | Once per extraction group (≤20) of samples, each matrix/level | Re-extract and reanalyze blank and associated samples                                                                            |
| Internal Standards:                                                                                                                              | -50% to +100% o                                        |                                                          | Each sample, MS,                                              | Reanalyze samples; if                                                                                                            |
| 1,4-Dichlorobenzene-d <sub>4</sub> Naphthalene-d <sub>6</sub> Acenaphthene-d <sub>10</sub> Phenanthrene-d <sub>10</sub> Chrysene-d <sub>12</sub> | standard area of '<br>RT change ≤30 so                 |                                                          | MSD, LCS, and blank                                           | reanalysis confirms original,<br>document on report and/or<br>case narrative                                                     |
| Perylene-d <sub>12</sub>                                                                                                                         |                                                        |                                                          |                                                               |                                                                                                                                  |

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

This criteria is for PPL, Appendix IX, and TCL lists.

Element B5 Revision No. 2 Date: 07/01/04 Page 19 of 36

Table B5-8
Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

|                            | Wat          | ters       | So           | Soils      |  |  |
|----------------------------|--------------|------------|--------------|------------|--|--|
| Compound Name              | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |  |
| 1,2,4,5-Tetrachlorobenzene | 58-110       | 34-124     | 67-117       | 33-141     |  |  |
| 1,2,4-Trichlorobenzene     | 49-107       | 53-113     | 72-102       | 37-132     |  |  |
| 1,2-Dichlorobenzene        | 45-103       | 49-106     | 64-101       | 41-115     |  |  |
| 1,2-Diphenylhydrazine      | 63-108       | 63-111     | 62-115       | 40-131     |  |  |
| 1,3,5-Trinitrobenzene      | 35-117       | 25-120     | 16-86        | 5-149      |  |  |
| 1,3-Dichlorobenzene        | 39-103       | 44-108     | 62-105       | 37-118     |  |  |
| 1,3-Dinitrobenzene         | 71-120       | 77-107     | 74-113       | 39-133     |  |  |
| 1,4-Dichlorobenzene        | 41-102       | 42-105     | 62-104       | 38-116     |  |  |
| 1,4-Naphthoquinone         | 10-187       | 25-52      | 25-102       | 25-188     |  |  |
| 1,4-Phenylenediamine       | 70-130       | 70-130     | 70-130       | 70-130     |  |  |
| 1-Naphthylamine            | 9-107        | 5-124      | 11-60        | 5-117      |  |  |
| 2,3,4,6-Tetrachlorophenol  | 65-129       | 46-132     | 74-117       | 2-172      |  |  |
| 2,4,5-Trichlorophenol      | 70-115       | 38-138     | 76-110       | 41-132     |  |  |
| 2,4,6-Trichlorophenol      | 71-109       | 31-140     | 75-106       | 41-132     |  |  |
| 2,4-Dichlorophenol         | 70-107       | 59-113     | 76-104       | 38-133     |  |  |
| 2,4-Dimethylphenol         | 60-107       | 39-123     | 68-103       | 44-131     |  |  |
| 2,4-Dinitrophenol          | 46-121       | 20-151     | 21-120       | 20-143     |  |  |
| 2,4-Dinitrotoluene         | 75-122       | 43-145     | 75-118       | 47-138     |  |  |
| 2,6-Dichlorophenol         | 70-112       | 73-108     | 70-113       | 22-135     |  |  |
| 2,6-Dinitrotoluene         | 71-108       | 47-128     | 75-108       | 52-124     |  |  |
| 2-Acetylaminofluorene      | 68-116       | 78-103     | 68-111       | 7-143      |  |  |
| 2-Chloronaphthalene        | 65-108       | 64-114     | 72-103       | 45-127     |  |  |
| 2-Chiorophenoi             | 63-112       | 56-110     | 74-104       | 46-124     |  |  |
| 2-Methylnaphthalene        | 59-107       | 43-130     | 70-102       | 42-128     |  |  |
| 2-Methylphenol             | 56-105       | 34-119     | 68-103       | 42-125     |  |  |
| 2-Naphthylamine            | 5-104        | 5-91       | 5-27         | 5-102      |  |  |
| 2-Nitroaniline             | 74-114       | 69-127     | 76-117       | 47-137     |  |  |
| 2-Nitrophenol              | 71-113       | 32-146     | 76-111       | 42-133     |  |  |
| 2-Picoline                 | 52-96        | 71-80      | 47-102       | 31-114     |  |  |
| 3- or 4-methylphenol       | 52-97        | 30-114     | 65-113       | 40-132     |  |  |
| 3,3'-Dichlorobenzidine     | 30-108       | 30-122     | 9-101        | 2-129      |  |  |
| 3,3'-Dimethylbenzidine     | 5-71         | 14-61      | 35-69        | 5-115      |  |  |
| 3-Methylcholanthrene       | 70-117       | 69-113     | 78-118       | 2-183      |  |  |
| 3-Nitroaniline             | 64-113       | 48-122     | 53-107       | 26-131     |  |  |
| 4,6-Dinitro-2-methylphenol | 56-130       | 29-141     | 41-121       | 5-150      |  |  |

Element B5 Revision No. 2 Date: 07/01/04 Page 20 of 36

### Table B5-8 - Continued

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

|                                | Wat          | ters       | So           | Soils      |  |
|--------------------------------|--------------|------------|--------------|------------|--|
| Compound Name                  | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |
| 4-Aminobiphenyl                | 7-72         | 2-83       | 5-72         | 5-132      |  |
| 4-Chloro-3-methylphenol        | 71-113       | 56-122     | 72-117       | 47-136     |  |
| 4-Chloroaniline                | 32-120       | 22-122     | 14-104       | 6-126      |  |
| 4-Chlorophenyl phenylether     | 67-109       | 64-109     | 70-108       | 52-122     |  |
| 4-Nitroaniline                 | 56-107       | 55-103     | 48-96        | 27-133     |  |
| 4-Nitrophenol                  | 19-76        | 10-95      | 55-133       | 14-172     |  |
| 4-Nitroquinoline-1-oxide       | 20-169       | 20-103     | 10-58        | 10-60      |  |
| 5-Nitro-o-toluidine            | 24-105       | 30-92      | 26-55        | 5-116      |  |
| 7,12-Dimethylbenz(a)anthracene | 46-106       | 40-111     | 69-115       | 26-150     |  |
| a,a-Dimethylphenethylamine     | 70-130       | 70-130     | 70-130       | 70-130     |  |
| Acenaphthene                   | 69-112       | 59-120     | 76-109       | 48-132     |  |
| Acenaphthylene                 | 52-117       | 27-134     | 66-113       | 46-128     |  |
| Acetophenone                   | 61-103       | 70-94      | 59-110       | 34-133     |  |
| Aniline                        | 35-102       | 33-102     | 40-95        | 1-153      |  |
| Anthracene                     | 69-108       | 60-117     | 71-107       | 35-138     |  |
| Benzidine                      | 20-104       | 20-125     | 20-90        | 20-101     |  |
| Benzo(a)anthracene             | 74-113       | 72-108     | 74-107       | 26-144     |  |
| Benzo(a)pyrene                 | 74-116       | 77-110     | 79-113       | 23-154     |  |
| Benzo(b)fluoranthene           | 71-116       | 72-109     | 71-113       | 32-140     |  |
| Benzo(g,h,i)perylene           | 70-121       | 72-114     | 74-119       | 17-152     |  |
| Benzo(k)fluoranthene           | 72-116       | 73-111     | 75-112       | 36-143     |  |
| Benzyl alcohol                 | 54-100       | 61-89      | 60-112       | 56-112     |  |
| bis (2-Chloroethoxy)methane    | 74-120       | 75-116     | 75-114       | 50-136     |  |
| bis(2-Chloroethyl)ether        | 59-109       | 33-131     | 66-104       | 40-132     |  |
| bis(2-Chloroisopropyl)ether    | 59-133       | 59-145     | 67-137       | 53-136     |  |
| bis(2-Ethylhexyl)phthalate     | 62-126       | 64-130     | 63-131       | 48-137     |  |
| Butylbenzylphthalate           | 66-121       | 52-129     | 75-117       | 40-141     |  |
| Chlorobenzilate                | 44-136       | 21-144     | 72-130       | 55-149     |  |
| Chrysene                       | 73-113       | 73-108     | 72-109       | 23-150     |  |
| Diallate (cis/trans)           | 60-129       | 65-115     | 65-120       | 66-112     |  |
| Dibenz(a,h)anthracene          | 76-128       | 81-118     | 80-125       | 19-163     |  |
| Dibenzofuran                   | 66-107       | 60-110     | 72-107       | 39-129     |  |
| Diethylphthalate               | 61-110       | 35-124     | 75-109       | 53-128     |  |
| Dimethoate                     | 3-109        | 3-105      | 1-102        | 1-125      |  |
| Dimethylphthalate              | 34-114       | 2-132      | 76-108       | 52-125     |  |

Page 21 of 36

Table B5-8 - Continued

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

|                                | Wat          | ters       | So           | Soils      |  |
|--------------------------------|--------------|------------|--------------|------------|--|
| Compound Name                  | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |
| Di- <i>n-</i> butylphthalate   | 69-111       | 71-107     | 73-109       | 51-126     |  |
| Di-n-octylphthalate            | 62-118       | 64-119     | 67-115       | 38-147     |  |
| Ethylmethanesulfonate          | 63-108       | 77-99      | 68-105       | 39-121     |  |
| Fluoranthene                   | 69-107       | 70-104     | 69-107       | 19-145     |  |
| Fluorene                       | 61-116       | 52-121     | 66-115       | 39-137     |  |
| Hexachlorobenzene              | 71-110       | 65-114     | 72-110       | 44-133     |  |
| Hexachlorobutadiene            | 20-111       | 31-122     | 69-108       | 38-134     |  |
| Hexachlorocyclopentadiene      | 12-119       | 5-130      | 9-154        | 5-140      |  |
| Hexachloroethane               | 22-102       | 20-116     | 62-105       | 20-135     |  |
| Hexachloropropene              | 21-126       | 34-119     | 49-122       | 2-179      |  |
| Indeno(1,2,3-cd)pyrene         | 70-120       | 69-115     | 74-113       | 36-141     |  |
| Isodrin                        | 48-129       | 42-133     | 71-126       | 30-147     |  |
| Isophorone                     | 66-105       | 44-127     | 70-103       | 47-128     |  |
| Isosafrole                     | 60-103       | 69-96      | 69-96        | 45-114     |  |
| Methapyrilene                  | 3-31         | 3-35       | 2-44         | 2-118      |  |
| Methylmethanesulfonate         | 30-87        | 35-86      | 35-108       | 1-126      |  |
| Naphthalene                    | 58-108       | 63-107     | 73-103       | 38-132     |  |
| Nitrobenzene                   | 63-112       | 43-133     | 70-106       | 39-137     |  |
| n-Nitrosodiethylamine          | 64-110       | 80-99      | 66-103       | 5-147      |  |
| n-Nitrosodimethylamine         | 39-84        | 40-88      | 59-114       | 26-131     |  |
| n-Nitrosodi-n-butylamine       | 52-105       | 65-92      | 53-132       | 36-130     |  |
| n-Nitrosodi-n-propylamine      | 59-107       | 61-110     | 62-109       | 46-127     |  |
| n-Nitrosodiphenylamine         | 63-104       | 69-105     | 67-105       | 46-131     |  |
| n-Nitrosomethylethylamine      | 56-113       | 76-92      | 63-106       | 15-139     |  |
| n-Nitrosomorpholine            | 57-112       | 73-106     | 79-109       | 55-128     |  |
| n-Nitrosopiperidine            | 70-110       | 82-100     | 73-106       | 57-118     |  |
| n-Nitrosopyrrolidine           | 59-107       | 78-90      | 68-111       | 52-118     |  |
| O,O,O-Triethylphosphorothioate | 62-115       | 76-106     | 70-113       | 56-121     |  |
| o-Toluidine                    | 16-96        | 1-116      | 31-85        | 2-144      |  |
| p-(Dimethylamino)azobenzene    | 42-122       | 60-109     | 10-123       | 2-151      |  |
| Pentachlorobenzene             | 63-110       | 73-104     | 67-110       | 24-150     |  |
| Pentachloronitrobenzene        | 74-119       | 74-113     | 69-129       | 33-146     |  |
| Pentachlorophenol              | 50-112       | 20-130     | 47-110       | 5-138      |  |
| Phenacetin                     | 66-126       | 76-112     | 71-127       | 46-136     |  |
| Phenanthrene                   | 70-109       | 56-125     | 70-107       | 29-143     |  |

Page 22 of 36

#### Table B5-8 - Continued

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

| Compound Name                 | . Wa         | ters       | Soils        |            |
|-------------------------------|--------------|------------|--------------|------------|
|                               | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |
| Phenol                        | 24-65        | 12-87      | 67-108       | 30-137     |
| Pronamide                     | 71-114       | 73-109     | 72-112       | 14-157     |
| Pyrene                        | 69-116       | 67-112     | 71-110       | 28-144     |
| Pyridine                      | 31-88        | 31-88      | 33-101       | 16-110     |
| Safrole                       | 58-113       | 75-101     | 67-108       | 61-108     |
| Tetraethyldithiopyrophosphate | 62-128       | 64-119     | 67-120       | 48-151     |
| Thionazin                     | 67-115       | 71-111     | 69-109       | 66-120     |

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

All 70-130 windows are advisory due to insufficient data points.

Element B5 Revision No. 2 Date: 07/01/04 Page 23 of 36

## Table B5-9 Quality Control Volatiles Halocarbons and Aromatics by GC (8021B)

| <u> </u>                                                                                                                                                                       | Waters                                |                                                                                                 |                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Туре                                                                                                                                                                           | Acceptance Limits (%)                 | Frequency                                                                                       | Corrective Action                                                                                                                                                                                                                           |  |
| Surrogates: Halocarbons; 1-Bromo-4- chlorobenzene (ELCD) Aromatics; 1-Bromo-4- chlorobenzene (PID) Halocarbons/Aromatics; 1-Bromo-4- chlorobenzene (ELCD/PID) Non-halogenated; | 73-124 72-122 See above               | Each sample, MS,<br>MSD, LCS, and blank                                                         | Reanalyze if the surrogate recovery is outside the limits unless matrix related problems are evident                                                                                                                                        |  |
| 2-hexanone (FID)  Matrix Spikes:  Spike all compounds of interest                                                                                                              | See Table B5-10 for acceptance limits | Each group of samples of similar matrix/level (≤20) each method                                 | Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.                                                                                                                          |  |
| Laboratory Control<br>Samples/Check<br>Standards:<br>Spike all compounds of<br>interest                                                                                        | See Table B5-10 for acceptance limits | Each group (≤20);<br>LCSD is analyzed if<br>sufficient volume is<br>not available for<br>MS/MSD | Reanalyze LCS and associated samples for compounds outside of acceptance limits. Compounds that fall high in the LCS, and are ND in the sample, can be reported.                                                                            |  |
| Internal Standards:<br>Fluorobenzene<br>(ELCD/PID)                                                                                                                             | 80-120                                | Each sample, MS,<br>MSD, LCS, and blank                                                         | Reanalyze samples; if reanalysis confirms original, document on report and/or case narrative; in cases where matrix is elevating the internal standard (ISTD) recovery, a dilution may be performed to bring the ISTD within specifications |  |
| Matrix Spike Duplicates (RPD): Same compounds as matrix spikes                                                                                                                 | ≤30%                                  | Each group (≤20) of samples per matrix/level                                                    | Evaluated by analyst in relationship to other QC results                                                                                                                                                                                    |  |
| Blanks:                                                                                                                                                                        | ≤LOQ for all compounds                | At least one per<br>20 samples and at<br>least one per 24 hours                                 | Reanalyze blank and associated samples if blank is outside limits                                                                                                                                                                           |  |

Element B5 Revision No. 2 Date: 07/01/04 Page 24 of 36

Table B5-10
Statistical Acceptance Limits for
Volatiles Halocarbons and Aromatics by GC (8021B)

|                           | Waters       |            |  |  |  |
|---------------------------|--------------|------------|--|--|--|
| Compound Name             | LCS/LCSD (%) | MS/MSD (%) |  |  |  |
| 1,1,1-Trichloroethane     | 83-119       | 80-121     |  |  |  |
| I,1,2,2-Tetrachloroethane | 85-119       | 81-125     |  |  |  |
| 1,1,2-Trichloroethane     | 85-119       | 82-113     |  |  |  |
| ,1-Dichloroethane         | 80-115       | 79-122     |  |  |  |
| ,1-Dichloroethene         | 72-118       | 69-128     |  |  |  |
| ,2-Dichlorobenzene        | 85-115       | 86-124     |  |  |  |
| ,2-Dichloroethane         | 85-115       | 81-117     |  |  |  |
| ,2-Dichloropropane        | 83-118       | 87-116     |  |  |  |
| ,3-Dichlorobenzene        | 85-118       | 80-123     |  |  |  |
| ,4-Dichlorobenzene        | 84-115       | 82-118     |  |  |  |
| Senzene                   | 84-115       | 78-119     |  |  |  |
| romodichloromethane       | 80-119       | 74-118     |  |  |  |
| romoform                  | 85-124       | 75-127     |  |  |  |
| romomethane               | 67-120       | 45-150     |  |  |  |
| arbon tetrachloride       | 83-119       | 74-121     |  |  |  |
| hlorobenzene              | 84-115       | 82-115     |  |  |  |
| hloroethane               | 66-136       | 70-139     |  |  |  |
| hloroform                 | 81-115       | 81-119     |  |  |  |
| Chloromethane             | 16-180 11    |            |  |  |  |
| is-1,2-Dichloroethene     | 81-115 68-1  |            |  |  |  |
| is-1,3-Dichloropropene    | 85-119       | 57-131     |  |  |  |
| ibromochloromethane       | 83-115       | 79-120     |  |  |  |
| Dichlorodifluoromethane   | 32-140       | 29-155     |  |  |  |
| Ethylbenzene              | 84-115       | 81-116     |  |  |  |
| fethylene chloride        | 68-126       | 62-129     |  |  |  |
| etrachloroethene          | 82-115       | 74-130     |  |  |  |
| oluene                    | 83-115       | 80-114     |  |  |  |
| ans-1,2-Dichloroethene    | 74-115       | 72-120     |  |  |  |
| ans-1,3-Dichloropropene   | 85-115       | 74-125     |  |  |  |
| richtoroethene            | 81-115       | 74-122     |  |  |  |
| richlorofluoromethane     | 59-125       | 58-138     |  |  |  |
| /inyl chloride            | 65-119       | 68-136     |  |  |  |
| (viene (total)            | 84-115       | 81-117     |  |  |  |

Page 25 of 36

## **Table B5-11**Quality Control Petroleum Analysis by GC (8021B)

|                                                                | Acceptance                     | Limits (%) |                                                                    |                                                                                                                                                                                                                 |
|----------------------------------------------------------------|--------------------------------|------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                           | Waters                         | Soils      | Frequency                                                          | Corrective Action                                                                                                                                                                                               |
| Surrogates:<br>α,α,α-Trifluorotoluene (PID)                    | 66-136                         | 72-122     | Each sample, MS,<br>MSD, LCS, and<br>blank                         | Reanalyze if the surrogate recovery is outside the limits unless matrix-related problems are evident                                                                                                            |
| Matrix Spikes:<br>Spike all compounds of interest              | See Table B                    | 5-12       | Each group (≤20) of samples per matrix/level                       | Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.                                                                                              |
| Laboratory Control Samples:<br>Spike all compounds of interest | See Table B                    | 5-12       | Each group (≤20) of samples per matrix/level                       | Reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.                                                   |
| Matrix Spike Duplicates (RPD):                                 | ≤30% for wa<br>soils           | ters and   | Each group (≤20) of samples per matrix/level                       | Evaluated by an analyst in relationship to other QC results                                                                                                                                                     |
| Blanks:                                                        | ≤LOQ for all compounds         |            | At least one per<br>20 samples and at<br>least one per<br>24 hours | Reanalyze blank and associated samples if blank is outside limits                                                                                                                                               |
| Internal Standards:  1-Chloro-3-fluorobenzene (PID)            | -50% to +150<br>internal stand |            | Each sample, MS,<br>MSD, LCS, and<br>blank analyzed on<br>the PID  | Reanalyze samples; if reanalysis confirms original, document on report or case narrative; in cases where matrix is elevating the ISTD recovery, a dilution may be performed to bring ISTD within specifications |

Element B5 Revision No. 2 Date: 07/01/04 Page 26 of 36

**Table B5-12**Statistical Acceptance Limits for Petroleum Analysis by GC (8021B)

|               | Wai          | ers        | Soils        |            |  |
|---------------|--------------|------------|--------------|------------|--|
| Compound Name | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |
| Benzene       | 79-123       | 67-136     | 86-113       | 60-111     |  |
| Ethylbenzene  | 81-119       | 75-133     | 89-112       | 66-110     |  |
| MTBE          | 75-125       | 59-148     | 70-131       | 50-119     |  |
| Naphthalene   | 44-139       | 39-150     | 70-125       | 53-122     |  |
| Toluene       | 82-119       | 78-129     | 88-113       | 61-114     |  |
| Total Xylenes | 82-120       | 78-130     | 90-112       | 66-112     |  |

Page 27 of 36

## Table B5-13 Quality Control TPH-GRO by GC (8015B)

|                                                                | Acceptance Limits (%)     |        |                                                                                              |                                                                                                                    |
|----------------------------------------------------------------|---------------------------|--------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Туре                                                           | Waters                    | Soils  | Frequency                                                                                    | Corrective Action                                                                                                  |
| Surrogates:<br>Trifluorotoluene (FID)                          | 57-146                    | 71-122 | Each sample, MS,<br>MSD, LCS, and<br>blank                                                   | Reanalyze if the surrogate recovery is outside the limits unless matrix-related problems are evident               |
| Matrix Spikes:<br>Gasoline standard<br>8015B                   | 63-154                    | 39-118 | Each group of samples of similar matrix/level (≤20) each method                              | Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD. |
| Laboratory Control Samples:<br>Gasoline standard               | 70-130                    | 67-119 | Each group (≤20) of samples. LCSD analyzed if sufficient volume is not available for MS/MSD. | Reanalyze LCS and associated samples. LCS that fails high, and GRO is ND in the sample, can be reported.           |
| Matrix Spike Duplicates (RPD): Same compounds as matrix spikes | ≤30% for waters and soils |        | Each group (≤20) of samples per matrix/level                                                 | Evaluated by analyst in relationship to other QC results                                                           |
| Blanks:                                                        | ≤LOQ                      |        | At least one per<br>20 samples and at<br>least one per<br>24 hours                           | Reanalyze blank and associated samples if blank is outside limits                                                  |

Page 28 of 36

## **Table B5-14**Quality Control TPH-DRO by GC (8015B)

|                                                             | Acceptance Limits (%) |          |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|-----------------------|----------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                        | Waters                | Soils    | Frequency                                                                          | Corrective Action                                                                                                                                                                                                                                                                                                                                                 |
| Surrogates:<br>o-Terphenyl                                  | 54-127                | 60-131   | Added to each sample, MS/MSD, blank, and LCS/LCSD during the extraction phase      | Repeat extraction and analysis; if reanalysis confirms original result, report results and comment in case narrative                                                                                                                                                                                                                                              |
| Matrix Spikes:<br>#2 Fuel Oil<br>8015B<br>API<br>California | 41-145                | 37-153   | Each group (≤20) of samples per matrix/level                                       | Reinject if surrogates appear low. If still out of spec, evaluate for matrix effect. If matrix effect, accept based on LCS data. If no matrix effect, repeat batch.                                                                                                                                                                                               |
| Laboratory Control Samples:<br>No. 2 Fuel                   | 53-126                | 74-118   | Éach group ≤20                                                                     | Reinject if surrogates appear low. If still out of spec, repeat batch. LCS that fails high, and DRO is ND in the sample, can be reported.                                                                                                                                                                                                                         |
| Laboratory Control<br>Duplicates (RPD):<br>#2 Fuel          | ≤20% for wa           | ters and | Each group (≤20) of samples per matrix/level                                       | Evaluated by analyst in relationship to other QC results                                                                                                                                                                                                                                                                                                          |
| Blanks:                                                     | ≤LOQ                  |          | Once per case or extraction group (≤20) of samples, each matrix, level, instrument | Inject a solvent blank first to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected, if they, too, contain the analyte that was contaminating the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted. |

Element B5 Revision No. 2 Date: 07/01/04 Page 29 of 36

#### Table B5-15

# Quality Control Organochlorine Pesticides/PCBs (8081A/8082) Herbicides (8151A) Organophosphate Pesticides (8141A)

|                                                                                                                                     | Acceptance Limits (%)                                     |                  |                                                                     |                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Туре                                                                                                                                | Waters                                                    | Soils            | Frequency                                                           | Corrective Action                                                                                                  |
| Surrogates: Organochlorine Pesticides: DCB                                                                                          | 47-155                                                    | 62-159           | Added to each sample, MS/MSD, blank, LCS/LCSD during the extraction | Repeat extraction and analysis; if reanalysis confirms original result, report results and comment                 |
| TCX  Herbicides:  DCAA                                                                                                              | 45-125<br>31-137                                          | 58-149<br>31-137 | phase                                                               | in case narrative                                                                                                  |
| Organophosphate Pesticides:<br>2NMX                                                                                                 | 46-117                                                    | 69-118           |                                                                     |                                                                                                                    |
| Matrix Spikes: Organochlorine Pesticides (for 8081A/8082) (spike all compounds of interest, except PCBs, chlordane, and toxaphene); | See Table B5-16<br>through B5-18 for<br>acceptance limits |                  | Each extraction group<br>(≤20) of samples per<br>matrix/level       | Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD. |
| Herbicides (spike all compounds of interest);                                                                                       |                                                           | ·                |                                                                     |                                                                                                                    |
| Organophosphate Pesticides (spike all compounds of interest);                                                                       |                                                           |                  |                                                                     |                                                                                                                    |
| PCBs (for 8082 only) Aroclor 1016 Aroclor 1260                                                                                      |                                                           |                  |                                                                     |                                                                                                                    |

Element B5 Revision No. 2 Date: 07/01/04 Page 30 of 36

#### Table B5-15 - Continued

Quality Control
Organochlorine Pesticides/PCBs (8081A/8082)
Herbicides (8151A)
Organophosphate Pesticides (8141A)

|                                                                                                                                                  | Acceptance l                                    | imits (%) |                                                               |                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                                                                                                             | Waters                                          | Soils     | Frequency                                                     | Corrective Action                                                                                                                                                            |
| Laboratory Control Samples: Organochlorine Pesticides (for 8081A/8082) (spike all compounds of interest, except PCBs, chlordane, and toxaphene); | See Table B5<br>through B5-18<br>acceptance lin | 3 for     | Each group (≤20) when MS/MSD falls outside established limits | Re-extract and reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported. |
| Herbicides (spike all compounds of interest);                                                                                                    |                                                 |           |                                                               | ·                                                                                                                                                                            |
| Organophosphate Pesticides (spike all compounds of interest);                                                                                    |                                                 |           |                                                               |                                                                                                                                                                              |
| PCBs (for 8082 only) Aroclor 1016 Aroclor 1260                                                                                                   |                                                 |           |                                                               | ·                                                                                                                                                                            |

Element B5 Revision No. 2 Date: 07/01/04 Page 31 of 36

#### Table B5-15 - Continued

# Quality Control Organochlorine Pesticides/PCBs (8081A/8082) Herbicides (8151A) Organophosphate Pesticides (8141A)

|                                                                                                                      | Acceptance | Limits (%) |                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------|------------|------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                                                                                 | Waters     | Soils      | Frequency                                                                  | Corrective Action                                                                                                                                                                                                                                                                                                                                                         |
| Matrix Spike Duplicates (RPD):                                                                                       | ≤30%       | ≤50%       | Each group (≤20) of samples per                                            | Evaluated by analyst in relationship to other QC                                                                                                                                                                                                                                                                                                                          |
| Organochlorine Pesticides (for 8081A/8082) (spike all compounds of interest, except PCBs, chlordane, and toxaphene); |            |            | matrix/level                                                               | results                                                                                                                                                                                                                                                                                                                                                                   |
| Herbicides (spike all compounds of interest);                                                                        |            |            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| Organophosphate Pesticides (spike all compounds of interest);                                                        |            |            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| PCBs (for 8082 only)                                                                                                 |            |            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| Aroclor 1016<br>Aroclor 1260                                                                                         |            |            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| Blanks:                                                                                                              | ≰LOQ       |            | Once per extraction group (≤20) of samples, each matrix, level, instrument | Inject a hexane or solvent blank first to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected if they too, contain the analyte that was contaminating the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted. |

Element B5 Revision No. 2 Date: 07/01/04 Page 32 of 36

Table B5-16
Statistical Acceptance Limits for
Organochlorine Pesticides/PCBs (8081A/8082)

|                     | Wat          | ters       | So           | Soils      |  |  |
|---------------------|--------------|------------|--------------|------------|--|--|
| Compound Name       | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |  |
| 4,4-DDD             | 42-155       | 69-155     | 71-143       | 52-181     |  |  |
| 4,4-DDE             | 44-154       | 59-159     | 71-143       | 48-175     |  |  |
| 4,4-DDT             | 47-159       | 56-145     | 67-152       | 62-166     |  |  |
| Aldrin              | 47-122       | 44-122     | 74-137       | 58-159     |  |  |
| alpha-BHC           | 56-122       | 61-137     | 70-134       | 64-134     |  |  |
| alpha-Chlordane     | 62-135       | 60-126     | 76-133       | 46-163     |  |  |
| beta-BHC            | 64-143       | 44-160     | 68-137       | 31-176     |  |  |
| Chlordane           | · N/A        | N/A        | N/A          | N/A        |  |  |
| delta-BHC           | 41-155       | 60-161     | 53-167       | 68-158     |  |  |
| Dieldrin            | 71-129       | 57-137     | 71-133       | 68-139     |  |  |
| Endosulfan I        | 66-131       | 54-141     | 71-130       | 41-166     |  |  |
| Endosulfan II       | 61-141       | 71-141     | 73-134       | 65-144     |  |  |
| Endosulfan sulfate  | 56-140       | 46-154     | 58-133       | 65-154     |  |  |
| Endrin              | 62-135       | 44-152     | 74-142       | 58-171     |  |  |
| Endrin aldehyde     | 36-158       | 53-149     | 47-145       | 63-125     |  |  |
| Endrin Ketone       | 61-139       | 72-139     | 70-143       | 33-173     |  |  |
| gamma-BHC (Lindane) | 65-144       | 49-136     | 74-133       | 43-154     |  |  |
| gamma-Chlordane     | 52-153       | 68-143     | 63-145       | 30-157     |  |  |
| Heptachlor          | 45-130       | 37-145     | 72-143       | 70-138     |  |  |
| Heptachlor epoxide  | 73-141       | 45-143     | 72-132       | 69-133     |  |  |
| Kepone              | N/A          | N/A        | N/A          | N/A        |  |  |
| Lindane             | 65-144       | 49-136     | 74-138       | 43-154     |  |  |
| Methoxychlor        | 49-155       | 47-170     | 52-174       | 74-162     |  |  |
| PCB-1016            | · 52-123     | 66-115     | 72-120       | 45-125     |  |  |
| PCB-1221            | N/A          | N/A        | N/A          | N/A        |  |  |
| PCB-1232            | N/A          | N/A        | N/A          | N/A        |  |  |
| PCB-1242            | N/A          | N/A        | N/A          | N/A        |  |  |
| PCB-1248            | N/A          | N/A        | N/A          | N/A        |  |  |
| PCB-1254            | N/A          | N/A        | N/A          | N/A        |  |  |
| PCB-1260            | 62-133       | 75-114     | 76-122       | 32-139     |  |  |
| Toxaphene           | N/A          | N/A        | N/A          | N/A        |  |  |

Page 33 of 36

**Table B5-17** Statistical Acceptance Limits for Organophosphate Pesticides (8141A)

|                           | Wai          | ters       | Soils        |            |  |
|---------------------------|--------------|------------|--------------|------------|--|
| Compound Name             | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |
| Bolstar                   | 73-130       | 52-144     | 68-122       | 59-140     |  |
| Coumaphos                 | 60-141       | 45-141     | 44-167       | 18-210     |  |
| Demeton-O                 | 29-91        | 28-97      | 34-94        | 22-122     |  |
| Demeton-S                 | 53-176       | 85-191     | 63-170       | 41-214     |  |
| Diazinon                  | 68-142       | 59-176     | 68-146       | 60-148     |  |
| Dichlorvos                | 29-174       | 83-165     | 46-227       | 46-227     |  |
| Disulfoton                | 71-123       | 71-141     | 51-127       | 54-130     |  |
| Dursban (Chlorpyrifos)    | 72-127       | 66-148     | 53-156       | 74-149     |  |
| EPN                       | 65-129       | 48-134     | 54-140       | 48-162     |  |
| Ethion                    | 66-133       | 74-121     | 57-153       | 57-157     |  |
| Ethoprop                  | 55-144       | 75-127     | 65-141       | 76-134     |  |
| Ethyl parathion           | 68-125       | 58-157     | 58-145       | 34-181     |  |
| Famphur                   | 49-139       | 34-151     | 60-153       | 45-199     |  |
| Fensulfothion             | 13-124       | 56-140     | 61-200       | 74-143     |  |
| Fenthion                  | 59-138       | 68-133     | 68-149       | 66-137     |  |
| Guthion (Azinphos-methyl) | 43-159       | 28-159     | 36-174       | 47-130     |  |
| Malathion                 | 78-130       | 46-150     | 64-157       | 39-176     |  |
| Merphos                   | 30-170       | 54-152     | 38-190       | 1-238      |  |
| Methyl parathion          | 53-142       | 51-152     | 56-141       | 63-147     |  |
| Mevinphos                 | 30-133       | 63-140     | 55-176       | 25-231     |  |
| Naled                     | 11-129       | 24-183     | 19-175       | 19-170     |  |
| Phorate                   | 71-127       | 44-163     | 61-134       | 65-130     |  |
| Ronnel                    | 63-133       | 76-128     | 62-133       | 67-135     |  |
| Stirophos                 | 43-149       | 68-143     | 49-164       | 31-228     |  |
| Tokuthion                 | 79-131       | 86-124     | 66-142       | 51-168     |  |
| Trichloronate             | 71-125       | 77-120     | 56-131       | 63-129     |  |
| Trithion                  | 73-122       | 69-138     | 57-160       | 55-173     |  |

Page 34 of 36

Table B5-18
Statistical Acceptance Limits for Herbicides (8151A)

|                      | Wat          | ters       | Soils        |            |  |
|----------------------|--------------|------------|--------------|------------|--|
| Compound Name        | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |  |
| 2,4,5-T              | 55-134       | 48-180     | 50-159       | 13-189     |  |
| 2,4,5-TP             | 65-130       | 44-161     | 57-135       | 30-151     |  |
| 2,4-D                | 55-123       | 38-176     | 63-132       | 41-158     |  |
| 2,4-DB               | 41-163       | 59-123     | 57-139       | 72-168     |  |
| 2,4-DP (Dichlorprop) | 76-127       | 74-123     | 68-126       | 59-136     |  |
| Dalapon              | 31-113       | 32-98      | 18-82        | 12-86      |  |
| Dicamba              | 59-134       | 61-144     | 56-125       | 52-126     |  |
| Dinoseb              | 19-96        | 1-119      | 1-36         | 1-48       |  |
| MCPA                 | 61-127       | 48-157     | 67-122       | 48-145     |  |
| MCPP                 | 67-119       | 43-159     | 59-123       | 33-123     |  |
| Pentachiorophenol    | 48-112       | 41-105     | 47-109       | 20-117     |  |

Page 35 of 36

## Table B5-19 Quality Control PAHs by HPLC (8310)

|                                                                   | Acceptance       | e Limits (%)     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------|------------------|------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                              | Waters           | Soils            | Frequency                                                                 | Corrective Action                                                                                                                                                                                                                                                                                                                                                     |
| Surrogates:<br>Nitrobenzene or<br>Triphenylene                    | 63-154<br>59-131 | 59-121<br>48-161 | Added to each sample, MS/MSD, blank, LCS/LCSD during the extraction phase | Surrogate must be within the limits unless matrix related problems are evident. If matrix related problems are evident, comment on report and in case narrative.                                                                                                                                                                                                      |
| Matrix Spikes:<br>Spike all compounds of interest                 | See Table        | B5-20            | Each group (≤20) of samples per matrix/level                              | Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.                                                                                                                                                                                                                                                    |
| Laboratory Control Samples:<br>Spike all compounds of interest    | See Table        | B5-20            | Each group (≤20)<br>of samples per<br>matrix/level                        | Re-extract and reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.                                                                                                                                                                                          |
| Matrix Spike Duplicates (RPD):<br>Spike all compounds of interest | ≤30%             | ≤50%             | Each group (≤20)<br>of samples per<br>matrix/level                        | Evaluated by analyst in relation to other QC results                                                                                                                                                                                                                                                                                                                  |
| Blanks:                                                           | ≤LOQ             |                  | Once per extraction group (≤20) of samples, each matrix/level             | Inject a hexane or solvent blank first, to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected, if they contain the analyte, which was present in the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted. |

Page 36 of 36

Table B5-20
Statistical Acceptance Limits for PAHs by HPLC (8310)

|                        | Wat          | lers       | Soi          | ls         |
|------------------------|--------------|------------|--------------|------------|
| Compound Name          | LCS/LCSD (%) | MS/MSD (%) | LCS/LCSD (%) | MS/MSD (%) |
| Acenaphthene           | 60-116       | 59-114     | 72-115       | 54-125     |
| Acenaphthylene         | 56-115       | 63-104     | 66-110       | 49-123     |
| Anthracene             | 68-113       | 72-112     | 68-117       | 1-158      |
| Benzo(a)anthracene     | 73-114       | 78-112     | 72-115       | 28-54      |
| Benzo(a)pyrene         | 68-112       | 68-125     | 68-116       | 45-139     |
| Benzo(b)fluoranthene   | 72-113       | 70-119     | 74-118       | 47-122     |
| Benzo(g,h,i)perylene   | 7-128        | 54-122     | 73-116       | 34-123     |
| Benzo(k)fluoranthene   | 72-119       | 68-121     | 71-119       | 62-108     |
| Chrysene               | 70-111       | 76-111     | 71-108       | 5-141      |
| Dibenz(a,h)anthracene  | 19-129       | 59-128     | 76-126       | 57-113     |
| Fluoranthene           | 70-112       | 85-115     | 73-107       | 50-112     |
| Fluorene               | 61-116       | 73-102     | 71-106       | 54-121     |
| Indeno(1,2,3-cd)pyrene | 56-137       | 58-130     | 76-127       | 31-147     |
| Naphthalene            | 57-109       | 54-112     | 61-120       | 50-123     |
| Phenanthrene           | 67-115       | 66-115     | 73-112       | 65-115     |
| Pyrene                 | 69-113       | 79-106     | 67-117       | 3-143      |

Element B6 Revision No. 2 Date: 07/01/04 Page 1 of 4

#### B6. Instrument/Equipment Testing, Inspection, and Maintenance Requirements

Conditions of the laboratory equipment and instrumentation can have a marked effect on the accuracy and precision of analysis. In order to ensure timely production of data and prevent/address potential malfunctions, Lancaster Laboratories schedules routine preventive maintenance of instruments based on manufacturer's recommendations. Maintenance of the laboratory instruments is the responsibility of the technical group using the equipment in conjunction with our in-house Equipment Maintenance Group. A schedule of routinely performed instrument maintenance tasks is attached as Table B6-1. All preventive maintenance, as well as maintenance performed as corrective action, is recorded in instrument logs. Equipment/Instrumentation is assigned unique designations to allow tracking of the piece of equipment within laboratory documentation. This allows the laboratory to substantiate the instrument condition during the time it was used for testing.

Critical spare parts are kept in supply at the laboratory by the Equipment Maintenance Group. Most items not kept in stock at the laboratory are available through overnight delivery from the manufacturer. In addition, Lancaster Labs maintains multiple numbers of most of the critical instruments used in our laboratory operations. A recent equipment inventory may be found in the *Environmental Quality Policy Manual*. Because we are a large laboratory with redundant capacity, the problems of instrument downtime are minimized.

Page 2 of 4

**Table B6-1**Preventive Maintenance Schedule

| Instrument    | Preventive Maintenance                      | Frequency                 |
|---------------|---------------------------------------------|---------------------------|
| GC/MS         | Change septum                               | AN*: Min. weekly          |
|               | Clean/replace injection port seal and liner | AN                        |
|               | Check fans                                  | Monthly                   |
|               | Check cool flow                             | Monthly                   |
|               | Clean source                                | Bimonthly or AN           |
|               | Change oil in diffusion pump                | Annually                  |
|               | Change oil in rough pump                    | Annually                  |
| GC Volatiles  | Check propanol level in ELCD resevoir       | AN: Min. semiweekly       |
|               | Check all liquid and gas flows              | Prior to calib. or AN     |
|               | Clean ELCD cell, change reaction tube       | AN                        |
|               | Change ELCD, Teflon line, and resin tube    | AN                        |
|               | Replace absorbant trap in concentrators     | AN                        |
|               | Column maintenance                          | AN                        |
|               | Change PID lamp                             | AÑ                        |
|               | Precalibration instrument settings check    | Prior to each calibration |
| GC            | Septum change                               | Each run                  |
|               | Column/injection port maintenance           | AN                        |
|               | Clean detector                              | AN                        |
|               | Vacuum filters                              | Semiannually              |
|               | Leak check ECDs                             | Semiannually              |
| GFAA          | Inspect/clean furnace head and lenses       | Daily                     |
|               | Check rinse bottle & drain                  | Daily                     |
|               | Clean windows                               | Weekly                    |
|               | Clean air intakes                           | Monthly                   |
|               | Check Cool-Flow water level                 | Monthly                   |
|               | Inspect sample introduction capillary       | AN                        |
|               | Inspect graphite tube                       | AN                        |
|               | Adjust/replace electrodes/shroud            | AN                        |
|               | Clean Cool-Flow                             | AN                        |
| Cold Vapor AA | Replace pump tubing                         | AN: Min. weekly           |
| ·             | Lubricate pump head and autosampler         | AN                        |
|               | Inspect optical cell and windows            | Monthly                   |

Element B6 Revision No. 2 Date: 07/01/04 Page 3 of 4

### Table B6-1 - Continued Preventive Maintenance Schedule

| Instrument          | Preventive Maintenance                                  | Frequency    |
|---------------------|---------------------------------------------------------|--------------|
| ICP                 | Replace pump winding                                    | AN           |
|                     | Lubricate autosampler                                   | AN           |
|                     | Check tubing to torch                                   | AN           |
|                     | Vacuum instrument airfilters and air intakes            | AN           |
|                     | Check water filter, replace if needed                   | Quarterly    |
|                     | Change vacuum pump oil                                  | Quarterly    |
|                     | Clean optics and lenses                                 | Semiannually |
|                     | Clean Torch and injector tip                            | AN           |
|                     | Clean nebulizer and spray chamber                       | AN .         |
|                     | Check fan filters, clean if needed                      | AN           |
|                     | Check cool flow, clean if needed                        | AN           |
| Infrared            | Check on-demand diagnostics                             | Weekly       |
| Spectrometer (FTIR) | Change dessicant                                        | AN           |
| HPLC                | Pump lubrication                                        | Annually     |
|                     | Check pump seals                                        | Annually     |
|                     | Check valves cleaned or rebuilt                         | AN           |
|                     | Replace and/or adjust detector bulb                     | AN           |
|                     | Clean detector flow cell                                | AN           |
|                     | Replace Teflon lines                                    | AN           |
|                     | Autosampler septa replacement                           | AN           |
|                     | In-line filter sonication/cleaning                      | AN           |
|                     | System passivation                                      | AN           |
|                     | PCRS pump lubrication                                   | AN           |
|                     | Empty waste liquid resevoir                             | Dáily        |
| ICP/MS              | Change interface rough pump oil                         | Quarterly    |
|                     | Change MS rough pump oil                                | Semiannually |
|                     | Clean cones and ion lenses                              | AN           |
|                     | Clean torch, injector tip, nebulizer, and spray chamber | AN           |
|                     | Change peristalic tubing                                | Weekly       |
|                     | Vacuum instrument airfilters and air intakes            | AN           |
|                     | Empty waste liquid resevoir                             | Daily        |

Page 4 of 4

### Table B6-1 – Continued Preventive Maintenance Schedule

| Instrument        | Preventive Maintenance              | Frequency  |
|-------------------|-------------------------------------|------------|
| Total Organic     | Check IR zero and IR cell           | AN         |
| Carbon Analyzer   | Check for leaks                     | AN         |
|                   | Check acid pump calibration         | Birnonthly |
|                   | Check persulfate pump calibration   | Bimonthly  |
|                   | Inspect 6-port rotary valve         | AN         |
|                   | Inspect sample pump head            | AN         |
|                   | Wash molecular sieve                | AN         |
|                   | Check sample loop calibration       | Monthly    |
|                   | Clean gas permeation tube           | AN         |
|                   | Inspect digestion vessel O-rings    | AN         |
|                   | Check activated carbon scrubber     | AN         |
|                   | Dust back and clean circuit boards  | AN         |
| Total Organic     | Polish counter electrode            | Daily      |
| Halogen Analyzer  | Polish sensor electrode             | Daily      |
|                   | Clean loaders and pistons           | Weekly     |
| Autoanalyzer      | Clean sample probe                  | AN         |
| spectrophotometer | Clean proportioning pump            | AN         |
|                   | Inspect pump tubing, replace if wom | AN         |
|                   | Clean wash receptacles              | Monthly    |

<sup>\*</sup> AN means as needed. Any of these items may be performed more frequently if response during operation indicates this is necessary.

Element B7 Revision No. 2 Date: 07/01/04 Page 1 of 5

#### **B7. Instrument Calibration and Frequency**

All measuring and testing equipment having an effect on the accuracy or validity of calibrations and tests will be calibrated and/or verified on an on-going and routine basis. Procedures for initial calibration and continuing calibration verification are in place for all instruments within the laboratory. The calibrations generally involve checking instrument response to standards (standardization) for each target compound to be analyzed. The source and accuracy of standards used for this purpose are integral to obtaining the best quality data. Standards used at Lancaster Laboratories are purchased from commercial supply houses either as neat compounds or as solutions with certified concentrations. The accuracy and quality of these purchased standards is verified through documentation provided by these commercial sources. Most solutions and all neat materials require subsequent dilution to an appropriate working range. All dilutions performed are documented and the resulting solution is checked by obtaining the instrument response of the new solution and comparing with the response to the solution currently in use. Any discrepancies between the responses are investigated and resolved before the new solution is used. Each standard is assigned a code that allows traceability to the original components. The standard container is marked with the code, name of solution, concentration, date prepared, expiration date, and the initials of the preparer. Shelf life and storage conditions for standards are included in the standard operating procedures and old standards are replaced before their expiration date.

Each instrument is calibrated with a given frequency using one or more concentrations of the standard solution. As analysis proceeds, the calibration is checked for any unacceptable change in instrument response. If the calibration check verifies the initial response, the analysis proceeds. If the calibration check indicates that a significant change in instrument response has occurred, then a new calibration is initiated. If necessary, maintenance may be performed before the recalibration.

Some instrumentation calibration involves the comparison of an instrument reading to a physical standard with a known certified value such as balance/weights or comparison against other instrumentation/apparatus such as NIST thermometer.

Element B7 Revision No. 2 Date: 07/01/04 Page 2 of 5

Calibration records are usually kept in the form of raw data with the other instrument printouts. In cases where no data system is used, calibration data is manually recorded in notebooks. Any maintenance or repair is also recorded in a notebook. The information that is recorded either in the notebooks or on the instrument printout includes the date, instrument ID, employee name and/or identification number, and concentration or code number of standard.

The frequency of calibration and calibration verification, number of concentrations analyzed, and acceptance criteria for each of the instruments to be used are listed in Table B7-1. In addition to checking the instrument response to target compounds, the GC/MS units are checked to ensure that standard mass spectral abundance criteria are met. Before each calibration, instruments used for volatile compound analysis are tuned using bromofluorobenzene (BFB) and instruments used for semivolatile analysis are tuned using decafluorotriphenylphosphine (DFTPP). The key ions and their abundance criteria are listed in Table B7-2.

Page 3 of 5

**Table B7-1**Instrument Calibration and Frequency

|                                                                                                   |                                         | İnitial        | Calibration                                                                                                                                                                                                                                                       | Con                                                                  | tinuing Ca     | alibration Verification                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instrument                                                                                        | Frequency                               | # Std<br>Conc. | Acceptance Criteria                                                                                                                                                                                                                                               | Frequency                                                            | # Std<br>Conc. | Acceptance Criteria                                                                                                                                                                                                                        |
| GC/MS Volatiles*                                                                                  | After C-cal<br>fails                    | 6              | RF for SPCCs >0.300 for chlorobenzene, and 1,1,2,2-tetrachloroethane, and >0.100 for 1,1-dichloroethene, bromoform, and chloromethane CCCs ≤30%                                                                                                                   | Every<br>12 hours                                                    | 1              | RF for SPCCs >0.300 for chlorobenzene, and 1,1,2,2-tetrachloroethane, and >0.100 for 1,1-dichloroethene, bromoform, and chloromethane %Drift for CCCs ≤20                                                                                  |
| GC/MS<br>Semivolatiles*                                                                           | After C-cal fails                       | 6              | RF for SPCCs ≥0.050<br>%RSD for CCCs ≤30%                                                                                                                                                                                                                         | Every<br>12 hours                                                    | 1              | RF for SPCCs ≥0.050<br>%Drift for CCCs ≤20                                                                                                                                                                                                 |
| GC VOA<br>Halocarbons<br>and/or Aromatics                                                         | After C-cal<br>fails                    | At<br>least 5  | %RSD of <20% for individual compounds or for average of all compounds                                                                                                                                                                                             | Every<br>12 hours, or<br>every<br>10 samples                         | 1              | %Drift ±15% for individual compounds or average of all compounds                                                                                                                                                                           |
| GC Pesticides<br>and Herbicides<br>(DDT/Endrin<br>degradation<br>applies to method<br>8081A only) | Each new<br>run<br>After C-cal<br>fails | 5              | ≤20% RSD of RFs of initial calibration to use avg. RF, otherwise use curve fit. Degradation for DDT, endrin 15%.  Alternatively, if the average of the %RSDs of all compounds in the calibration standard is ≤20%, then the AVG RF can be used for all compounds. | Every 10 samples Every 20 samples or 12 hours for method 8081A, 8082 | 1              | ≤15% difference for individual analytes, from initial response for quantitation or A CCV is also compliant if the average RPD for all compounds in the CCV standard is ≤15%.  DDT/Endrin degradation check every 12 hours or 20 injections |
| HPLC PAHs                                                                                         | Each new<br>run or after<br>C-cal fails | 5              | ≤20% RSD of RFs of initial calibration to use average RF, otherwise use curve fit.  Alternatively, if the average of the %RSDs of all compounds in the calibration standard is ≤20%, then the AVG RF can be used for all compounds.                               | Every<br>10 samples                                                  | 1              | ≤15% difference for individual analytes, from initial response for quantitation or A CCV is also compliant if the average RPD for all compounds in the CCV standard is ≤15%.                                                               |
| GC TPH-GRO                                                                                        | After C-cal<br>fails                    | At<br>least 5  | %RSD of <20% otherwise use calibration curve                                                                                                                                                                                                                      | Every<br>12 hours or<br>every<br>10 samples                          | 1              | %Drift ±15%                                                                                                                                                                                                                                |
| GC TPH-DRO                                                                                        | After C-cal fails                       | 5              | % RSD of <20% for<br>average RF otherwise use<br>calibration curve                                                                                                                                                                                                | Every<br>10 samples                                                  | 1              | %Drift ±15%                                                                                                                                                                                                                                |

Page 4 of 5

#### Table B7-1 - Continued

#### Instrument Calibration and Frequency

|                                                  |                 | Initial     | Calibration                                                                                                               | Continuing Calibration Verification |     |                    |
|--------------------------------------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|--------------------|
| ICP                                              | Each new<br>run | 1           | Independent calibration verification (ICV) within ±10%, standards <5%RSD                                                  | Every<br>10 samples                 | 1   | Same as initial    |
| ICP-MS                                           | Each new<br>run | 3           | Independent calibration verification (ICV) within ±10% Corr. coeff. ≥0.995                                                | Every<br>10 samples                 | 1   | ±10% of true value |
| CVAA                                             | Each new<br>run | 5           | Independent calibration verification within ±10% Corr. coeff. >0.995                                                      | Every 10 samples                    | 1   | ±20% of true value |
| GFAA                                             | Each new<br>run | 5           | Independent calibration verification within ±10% Corr. coeff. >0.995                                                      | Every 10<br>samples                 | 1   | ±20% of true value |
| TOC Analyzer (w) Inst #1 (w) Inst #2 (s) Inst #3 | Weekly          | 1<br>5<br>4 | ±10% @ STD<br>Corr. coeff. >0.995<br>Corr. coeff. >0.995                                                                  | Every 10<br>samples                 | 1   | ±10% of true value |
| Autoanalyzer                                     | Daily           | 6           | Corr. coeff. >0.995                                                                                                       | Every 10 samples                    | 1   | ±10% of true value |
| Infrared<br>Spectrophotomet<br>er (FTIR)         | Monthly         | 7           | . Corr. coeff. >0.995                                                                                                     | Every 10<br>samples                 | 1   | ±10% of true value |
| TOX Analyzer                                     | Each batch      | 4           | ±5% @ STD                                                                                                                 | Every 8<br>samples                  | 1   | ±10% of true value |
| Balance                                          | Daily           | 4           | Top-loading balance ±.5%  Analytical balances ± .1% for weights >.1 g .05 g ± .5% .02 g ± 1.0% .01 g ± 2.0% .005 g ± 2.0% | N/A                                 | N/A | N/A                |

<sup>\*</sup>All compounds with %RSD >15 must use first or second order regression fit of the six calibration points. Alternatively, the AVG RF can be used for each compound.

#### **Abbreviations**

# Std Conc. - The number of standard concentrations used

SPCCs - System performance check compounds

CCCs - Calibration check compounds

RF - Response factor

%RSD - Percent relative standard deviation

CCV - Continuing calibration verification

CVAA - Cold vapor atomic absorption spectrophotometer

HPLC - High Performance Liquid Chromatography

ICP – Inductively coupled plasma spectrophotometer, ICP run also includes interelement correction check standard (beginning and end of run)

GFAA - Graphite furnace atomic absorption spectrophotometer

Element B7 Revision No. 2 Date: 07/01/04 Page 5 of 5

Table B7-2
Mass and Ion Abundance Criteria

| BFB Key lons   | Abundance Criteria                              |  |  |  |  |  |
|----------------|-------------------------------------------------|--|--|--|--|--|
| . 50           | 15% to 40% of mass 95                           |  |  |  |  |  |
| 75             | 30% to 60% of mass 95                           |  |  |  |  |  |
| 95             | Base peak, 100% relative abundance              |  |  |  |  |  |
| 96             | 5% to 9% of mass 95                             |  |  |  |  |  |
| 173            | Less than 2% of mass 174                        |  |  |  |  |  |
| 174            | Greater than 50% of mass 95                     |  |  |  |  |  |
| 175            | 5% to 9% of mass 174                            |  |  |  |  |  |
| 176            | Greater than 95% but less than 101% of mass 174 |  |  |  |  |  |
| 177            | 5% to 9% of mass 176                            |  |  |  |  |  |
| DFTPP Key lons | Abundance Criteria                              |  |  |  |  |  |
| 51             | 30% to 60% of mass 198                          |  |  |  |  |  |
| 68             | Less than 2% of mass 69                         |  |  |  |  |  |
| 70             | Less than 2% of mass 69                         |  |  |  |  |  |
| 127            | 40% to 60% of mass 198                          |  |  |  |  |  |
| 197            | Less than 1% of mass 198                        |  |  |  |  |  |
| 198            | Base peak, 100% relative abundance              |  |  |  |  |  |
| 199            | 5% to 9% of mass 198                            |  |  |  |  |  |
| 275            | 10% to 30% of mass 198                          |  |  |  |  |  |
| 365            | Greater than 1% of mass 198                     |  |  |  |  |  |
| 441            | Present but less than mass 443                  |  |  |  |  |  |
| 442            | Greater than 40% of mass 198                    |  |  |  |  |  |
| 443            | 17% to 23% of mass 442                          |  |  |  |  |  |

Element B8 Revision No. 1 Date: 07/01/04 Page 1 of 1

#### B8. Inspection/Acceptance Requirements for Supplies and Consumables

Analytical results can be affected by the type and quality of reagents, standards, and equipment. Time and effort could be lost if the reagents, standards, and equipment do not meet the specifications required for the method. Therefore, the specifications and/or requirements for reagents, standards, and equipment necessary to perform the testing methods are included in the analytical SOPs. Each technical department evaluates the reagents, standards and equipment they receive for acceptance and use in specific procedures. There are SOPs in place for procurement of supplies, and acceptance/evaluation of reagents and standards.

Sample bottles and vials provided to clients are purchased pre-cleaned to meet EPA specifications and guidelines for sample containers. Each lot of preservative purchased is analyzed for quality (signs of contamination) before being added to a sample container.

The deionized water system utilized by Lancaster Laboratories generates water meeting ASTM D1193-99, Type II water criteria and the USEPA Manual for the Certification of Laboratories Analyzing Drinking Water requirements. Appropriate testing is performed to monitor the system. The requirements for the DI system are documented in a laboratory SOP.

Element B9 Revision 1 Date: 07/01/04

Page 1 of 2

#### B9. Data Acquisition Requirements (Non-Direct Measurements)

The data acquired from the analytical procedures will be assessed for precision, accuracy, representativeness, comparability, and completeness (PARCCs). These specifications will be met through precision and accuracy criteria as specified in Element B5 and MDLs as specified in Element B4.

<u>Precision</u> – Precision is determined by measuring the agreement among individual measurements of the same property, under similar conditions. The laboratory objective is to equal or exceed the precision demonstrated for the applied analytical method on comparable samples. The degree of agreement is expressed as the relative percent difference (RPD%). Evaluation of the RPD% is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses. External evaluation of precision is accomplished by analysis of standard reference material and interlaboratory performance data.

Accuracy – Accuracy is a measure of the closeness of an individual measurement to the true or expected value. Analyzing a reference material of known concentration or reanalyzing a sample which has been spiked with a known concentration/amount is a way to determine accuracy. Accuracy is expressed as a percent recovery (%R). Evaluation of the %R is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses.

Representativeness – Representativeness expresses the degree to which data accurately represents the media and conditions being measured. The representativeness of the data from the sampling site will depend on the sampling procedure. Sample collection is the responsibility of the client. Samples will be homogenized, if required, as part of the laboratory sample preparation. By comparing the quality control data for the samples against other data for similar samples analyzed at the same time, representativeness can be determined for this objective.

Element B9 Revision 1 Date: 07/01/04 Page 2 of 2

<u>Comparability</u> – Comparability conveys the confidence with which one set of data can be compared to another. The analytical results can be compared to other laboratories by using traceable standards, standard methodology, and consistent reporting units. The Laboratory Quality Assurance Program documents internal performance, and the interlaboratory studies document performance compared to other laboratories.

Completeness – Completeness is a measure of the quantity of valid data acquired from a measurement process compared to the amount that was expected to be acquired under the measurement conditions. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. Additional information will be stored in the laboratory's archives, both hard copy and magnetic tape. SOPs are in place to provide traceability of all reported results.

<u>Uncertainty</u> – (ISO 17025) "All uncertainty components which are of importance in a given situation shall be taken into account using appropriate methods of analysis." (5.4.6.3) This means the laboratory must determine the uncertainty contribution of all steps in the testing process such as equipment, calibration, standards, reagents, preparation, cleanups, etc. Since, in most methods, the laboratory control sample (LCS) goes through the entire process of preparation to analysis; all factors that would contribute to uncertainty will be evident through the LCS results. LCS are performed with every batch of samples where appropriate for the method.

Element B10 Revision No. 1 Date: 07/01/04 Page 1 of 10

#### B10. Data Management

At a minimum, data management is initiated when Lancaster Laboratories receives the samples from the client. In many instances, client-communicated requirements for bottleware and analyses are documented on an Incoming Sample Activity Report (ISAR) prior to sample receipt. This communication helps ensure that analysis and reporting meet the client needs. Sample information and requested analyses are entered into the Laboratory Information Management System (LIMS) where it can be accessed by all laboratory personnel. The entry is based on the ISAR and the client's COC. After entry, labels are printed for each container and an Acknowledgement is printed for the client. This will show exactly what was entered for the client's samples.

The flow of data from the time the samples enter the laboratory until the data is reported is summarized in Table B10-1. Raw analytical data generated in the laboratories is collected on printouts from the instruments and associated data system or manually in bound notebooks. All data is tracked by a unique seven-digit sample number assignment. Analysts review data as it is generated to determine that the instruments and methods are performing within specifications. This review includes calibration checks, surrogate recoveries, blank checks, retention time reproducibility, and other QC checks described in Elements B4, B5, and B7. If any problems are noted during the analytical run and/or at completion, corrective action is taken and documented.

Any data recorded manually is collected in bound notebooks and recorded in indelible ink, as described in Element A9. Procedures are in place for handling erroneous entries and all changes are dated, initialed, and explained. All data is uploaded automatically or manually entered into the LIMS. The LIMS is programmed to accept and track the results of quality control samples including blanks, surrogates, recoveries, duplicates, controls, and reference materials. The LIMS is programmed with the acceptance criteria for each QC type and if results are outside specifications, then a message is displayed to the analyst.

Element B10 Revision No. 1 Date: 07/01/04 Page 2 of 10

Data obtained from instrument printouts are dated and contain the signature and/or identification of the analyst responsible for the generation. The LIMS also produces control charts and statistics, which are reviewed by QA staff for trends that may indicate problems with the analytical data.

Computer technology is an integral part of laboratory operations including analytical instrumentation and central corporate functions. The laboratory makes extensive use of computers for business applications, technical operations, and the QA program. The Information Technology (IT) group support hardware and software applications at all levels as their primary function. Although some commercial software has been adapted to the laboratory operation, a larger portion is custom programmed by the IT group. The System Development Life Cycle (SDLC) approach is utilized and hardware and software are evaluated for appropriate functionality, accuracy, and security. Changes to systems and testing are documented. As part of QA's routine traceability audits, the electronic records are reviewed.

The principal criteria used to validate data will be the acceptance criteria described in Elements B4, B5, and B7 and protocols specified in laboratory SOPs. Following review, interpretation, and data reduction by the analyst, data is transferred to the LIMS by direct data upload from the analytical data system or manually. This system stores client information, sample results, and QC results. Element D1 describes the data deliverables validation performed by the laboratory.

Project files are created per client/project and contain chain-of-custody records, analysis requirements, and laboratory acknowledgments that document samples received, laboratory sample number assignment, and analyses requested. Raw data is filed per batch number assignment and laboratory sample number that correlates to the sample receipt documents. When the project is complete, all documentation is archived for 10 years in a locked storage area.

Element B10 Revision No. 1 Date: 07/01/04 Page 3 of 10

### **Table B10-1**Sample and Data Flow

| Action                                                                                                                                    | Personnel Involved                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Sample received at Lancaster Labs                                                                                                         | Sample Administration                                           |
| <ul> <li>Unpacked and reconciled against the client paper work or<br/>Chain of Custody</li> </ul>                                         |                                                                 |
| SA Documentation log completed                                                                                                            |                                                                 |
| Sample is entered into sample management system                                                                                           | Sample Administration                                           |
| Lab ID number assigned                                                                                                                    |                                                                 |
| Analyses entered                                                                                                                          |                                                                 |
| Chain of custody started                                                                                                                  |                                                                 |
| Storage location assigned                                                                                                                 |                                                                 |
| Electronic record of sample number                                                                                                        |                                                                 |
| Labels generated                                                                                                                          |                                                                 |
| <ul> <li>Acknowledgement printed (record of samples received and<br/>analysis entered)</li> </ul>                                         |                                                                 |
| Sample stored in assigned location (refrigerator, freezer, etc.)                                                                          | Sample Support                                                  |
| Electronic record of sample #, bottle code, and location                                                                                  |                                                                 |
| Acknowledgment sent to client                                                                                                             | Sample Administration                                           |
| Sample removed from storage for analysis                                                                                                  | Technical Personnel                                             |
| Electronic requisition of sample number by bottle code                                                                                    |                                                                 |
| Necessary aliquot taken                                                                                                                   |                                                                 |
| Sample returned to storage                                                                                                                |                                                                 |
| Analysis is performed according to selected analytical method                                                                             | Technical Personnel                                             |
| Raw data recorded                                                                                                                         |                                                                 |
| Reviewed                                                                                                                                  |                                                                 |
| <ul> <li>Transferred to computer by chemist or technician* (this is<br/>tracked by the unique sample number and batch number.)</li> </ul> |                                                                 |
| Computer performs calculations as programmed according to methods                                                                         | Data Processing                                                 |
| Second chemist or supervisor verifies raw data vs. LIMS entry                                                                             | Technical Personnel                                             |
| Analytical reports are printed and reviewed prior to sending to the client                                                                | Billing and Reporting staff and Technical Personnel             |
| Data package deliverables are assembled                                                                                                   | Data Package Group                                              |
| Data packages are reviewed prior to sending to client                                                                                     | QA, Data Package Personnel, and Laboratory Management           |
| Data packages are scanned, creating Adobe Acrobat PDF files, which can be e-mailed or stored on a CD-ROM and sent to the client           | Data Package Personnel, Office<br>Services, Technical Personnel |
| Hard copy of batch raw data is archived                                                                                                   |                                                                 |
| Electronic files are backed up and archived                                                                                               |                                                                 |

<sup>\*</sup> Analyses requiring the chemist's interpretation may involve manual data reduction before entry into the computer.

Each analytical run is reviewed by a chemist for completeness and accuracy before interpretation and data reduction. The following calculations are used to reduce raw data to reportable results.

#### Semivolatiles and Volatiles by GC/MS Calculations:

GC/MS calculation used by the data system to determine concentration in extract for semivolatiles or in the sample itself for volatiles:

$$Q = \frac{(A_x)(I_s)}{(A_{is})(RRF)(V_i)}$$

Where:

Q = Concentration determined by the data system (mg/L)

A<sub>x</sub> = Peak area

A<sub>is</sub> = Internal standard peak area

Is = Amount of internal standard injected (ng)

RRF = Relative response factor

V<sub>i</sub> = Volume of extract injected (L) or volume sample purged (mL)

The extract concentration is further reduced by considering the initial sample weight or volume and the final extract volume:

Sample Concentration = 
$$\frac{(Q) (D) (F) (1000)}{IV (or IW)}$$

Where:

Q = Concentration determined by the data system (mg/L)

D = Dilution factor if needed

F = Final extract volume (mL)

IW = Initial sample weight (g)

IV = Initial sample volume (mL)

Results are reported in  $\mu$ g/L for water samples and  $\mu$ g/kg for solid samples. Soil samples are reported on a dry-weight basis. The results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

#### Volatiles by GC and Petroleum Analysis Calculations:

For volatiles by GC and petroleum analysis, a calibration is performed with a minimum of five levels using either an internal standard calibration or external calibration.

#### A. Internal standard calibration

$$CF = \frac{(A_x)(C_{is})}{(A_{is})(C_x)} \text{ or } CF = \frac{(H_x)(C_{is})}{(H_{is})(C_x)}$$

Where:

A<sub>x</sub> = Peak area of the compound to be measured in that level of the initial calibration

H<sub>x</sub> = Height area of the compound to be measured in that level of the initial calibration

A<sub>is</sub> = Peak area of the internal standard

H<sub>is</sub> = Height are of the internal standard

C<sub>is</sub> = Concentration of the internal standard

C<sub>x</sub> = Concentration of the compound spiked into that level

$$\overline{CF} = \frac{\sum all \ CF \ in \ the \ initial \ calibration}{n}$$

Where:

n = Number of levels in the initial calibration

Element B10 Revision No. 1 Date: 07/01/04 Page 6 of 10

Concentration = 
$$\frac{(A_x)(C_{is})}{(A_{is})(\overline{CF})} \times DF$$
 or  $\frac{(H_x)(C_{is})}{(H_{is})(\overline{CF})} \times DF$ 

Where:

 $A_x$  = Peak area of the compound to be measured

 $H_x$  = Height area of the compound to be measured

Ais = Peak area of the internal standard

His = Height area of the internal standard

 $C_{is}$  = Concentration of the internal standard.

<del>CF</del> = Average calibration factor

DF = Dilution factor or preparation factor

#### B. External calibration

Concentration = 
$$\frac{A_x}{CF} \times DF$$
 or  $\frac{H_x}{CF} \times DF$ 

Where all parameters are defined in A above.

Results are reported in  $\mu$ g/L for water samples and mg/kg for solid samples. Soil samples are reported on a dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

#### Herbicides and Organophosphate Pesticides:

For herbicides and organophosphate pesticides, an internal standard calibration is used. The results are calculated from the average response factor when the individual analyte %RSD is ≤20% or when the <u>average</u> of all analyte %RSDs is ≤20%. Otherwise, the results are calculated using the curve.

Element B10 Revision No. 1 Date: 07/01/04 Page 7 of 10

#### A. Curve

Sample Concentration,  $\mu g/kg$  or  $\mu g/L = Extract$  Concentration  $\times \frac{DF \times FV \times AF}{IW}$  (or IV)

#### Where:

Extract Concentration = (peak ht. - y-intercept)/slope

FV = Final volume

IW = Initial weight (g)

IV = Initial volume (mL)

DF = Dilution Factor

AF = Additional preparation factors

#### B. Average response factor

Extract Conc., 
$$mg/L = \frac{Pk \ Ht \ in \ sample}{ARF} \times \frac{Int \ std \ ht \ in \ L3 \ std}{Int \ std \ ht \ in \ sample}$$

#### Where:

ARF = Average Response Factor [(RF Calib1 + ... + RF Calib 5)/5]

RF = Peak height/conc. in standard

Results are reported as  $\mu$ g/L for water samples and  $\mu$ g/kg for solid samples. Soil samples are reported on a dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

Element B10 Revision No. 1 Date: 07/01/04 Page 8 of 10

#### PAHs by HPLC and Pesticide/PCB Calculations:

The results for the PAHs by HPLC and pesticide/PCBs analyses are calculated using external standard. The pesticides/PCBs results are calculated from the average response factor when the individual analyte %RSD is ≤20% or when the average of all analyte %RSDs is ≤20%. Otherwise, the results are calculated using the curve.

$$\frac{Pk \ Ht \times FV \times DF \times AF}{ARF \times IV \ (or \ IW)} = Concentration \ (mg/L \ or \ \mu g/kg)$$

Where:

Pk Ht = Peak height found in sample

ARF = Average response factor [(RFCalib1 + ...+ RFCalib5)/5]

FV = Final volume of sample extract (mL)

DF = Dilution factor (where applicable)

IV = Initial volume of sample extracted (mL)

IW = Initial weight of the sample extracted (g)

AF = Additional factor

If a curve is used, then  $\frac{Pk\ Ht}{ARF}$  is replaced by the following in the preceding equation:

Results are reported as  $\mu$ g/L for water samples and  $\mu$ g/kg for solid samples. Soil samples are reported on dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

#### TPH-GRO and TPH-DRO Calculations:

For TPH-GRO and TPH-DRO, an external calibration procedure of at least five levels of standards is used. The resulting point-to-point calibration curve is used by the data system to calculate analyte concentrations. The equations that the data system uses for calculating analyte concentrations are shown below:

$$Concentration = \left(\frac{Ax}{ARF}\right) \times (DF)$$

Where:

Ax = Total peak area in region defined as analyte

DF = Dilution factor

ARF = Average response factor from the calibration curve, calculated as shown below:

$$ARF = \frac{[(As1/Qs1) + (As2/Qs2) + (As3/Qs3) + (As4/Qs4) + (As5/Qs5) + ...(Asn/Qsn)]}{n}$$

Where:

As# = Analyte peak sum area for all components of calibration level #

Qs# = Analyte concentration sum for all components of calibration level #

n = Number of calibration levels

For DRO, the concentration determined is then multiplied by F/IV (or IW) to account for the sample preparation.

Where:

F = Final extract volume (mL)

IV = Initial sample volume (mL)

IW = Initial sample weight (g)

Results are reported in mg/L for water samples and in mg/kg for solid samples. Soil samples are reported on a dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

Element B10 Revision No. 1 Date: 07/01/04 Page 10 of 10

#### Inorganic Calculations:

The results for inorganic analyses are calculated using the following equation:

Concentration = 
$$\frac{(A) (D) (E)}{IV (or IW)}$$

Where:

A = The concentration determined using calibration data programmed into the instrument (mg/L)

D = Dilution factor if needed

E = Final extract volume (mL)

IW = Initial sample weight (g)

IV = Initial sample volume (mL)

Results are usually reported in mg/L for water samples and in mg/kg for solid samples. Alternate units are available upon request. Soil samples are reported on a dry-weight basis. The results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

### **GROUP C**

### **ASSESSMENT AND OVERSIGHT**

Element C1 Revision No. 1 Date: 07/01/04 Page 1 of 20

#### C1. Assessments and Response Actions

Whenever any of the data generated falls outside of the established acceptance criteria outlined for instrument tune and calibration (Element B7) and internal QC (Element B5), the cause of this irregularity must be investigated, corrected, and documented. The documentation will be used to prevent a recurrence of the problem and to inform management of the situation.

If the results are not within acceptance criteria, the appropriate corrective action will be initiated. This may include, but is not limited to, checking calculations and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with a comment stating the observed deviation.

A standard operating procedure is in place, which outlines the procedures to be followed when quality control data for an analysis falls outside of previously established acceptance limits. All batch QC data is entered into the computerized QC system promptly after its generation and evaluated for compliance. When the QC (blanks, check standards, continuing calibration verification, LCS/LCSD, etc) is noncompliant then corrective action is needed.

The Quality Assurance Department reviews monthly summaries of the quality control data entered onto the computerized sample management system by analysts. Control charts and statistics are reviewed for trends that may indicate problems with the analytical data. In this way, small problems are identified before they have any significant impact on laboratory results.

System audits are conducted on each department at Lancaster Laboratories by members of the Quality Assurance Department to ensure compliance with laboratory procedures and assist in identifying and correcting deficiencies. The audits include checks on methodology, reagent preparation, equipment calibration and maintenance, quality control results, and training of personnel. These audits may entail observation of procedures in process or a review of records to demonstrate traceability and compliance with all documented record keeping procedures. The QA Department will then issue a written report to management and the department that summarizes the audit. The department must respond in

Element C1 Revision No. 1 Date: 07/01/04 Page 2 of 20

writing to the audit report within 30 days of report receipt. The response must address the corrective action that needs to be taken along with an expected completion date and identify the employee responsible for completing the action. Audit results and the corresponding response are communicated to laboratory personnel and management. Follow-up audits verify that proper corrective action has been implemented.

Audits by outside organizations including clients, regulatory personnel, and the USEPA are permitted by arrangement with the Quality Assurance Department.

Performance audits consist of both intralaboratory and interlaboratory check samples. QC samples from commercial suppliers are analyzed quarterly to assess laboratory accuracy including a double blind program. The Laboratory also participates in a number of interlaboratory performance evaluation studies, which involve analysis of samples with concentrations of analytes that are known to the sponsoring organization, but unknown to the laboratory. Inorganics, pesticide/herbicides, trihalomethanes, volatile organic compounds, semivolatile organic compounds, and traditional wet chemistry analyses are analyzed by Lancaster Labs for studies conducted by various state agencies and private vendors (WS, WP, solid and hazardous waste). Representative results from some of these studies are in Figure C1-2.

When performance evaluation studies are identified as out of specification or when a nonconformance is due to a repetitive laboratory error, system failures, or observable trend, an Investigation and Corrective Action Report (ICAR) is issued. An example of an ICAR form is in Figure C1-1. The QA Department will circulate all completed Investigation and Corrective Action forms to the appropriate management.

Annually the QA Department itself is audited for compliance with corporate and departmental procedures, and meeting regulatory requirements. In a separate event, the laboratory Executive Group reviews the previous year's activities and documentation to evaluate the effectiveness of the quality system and its implementation/adequacy for the operation.

Element C1 Revision No. 1 Date: 07/01/04 Page 3 of 20

#### Figure C1-1

|                           | SIGN TEN UN CITATION OF THE STATE OF THE STA |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Investigation and Corrective Action Report (ICAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Part I – Descr            | iption of the Problem (Attach additional pages, if needed, in addition to supporting documentation.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.                        | Date of issue:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.                        | LL sample number(s) involved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.                        | Nature of the problem (describe in detail):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | Initiated by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Part II - The Ir          | nvestigation (Attach additional pages, if needed, in addition to supporting documentation.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.                        | Steps taken to investigate the problem:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.                        | Explanation of probable cause(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>3.</b>                 | Steps taken to prevent future occurrence (describe in detail and use corrective action check boxes below):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Corrective ac             | ion(s): Check the appropriate box and attach supporting documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| II Emp                    | loyee(s) retrained. (Attach proof of training) loyee(s) reread SOP, OMC, EQV, etc. (Attach copy of updated training record form) ir measures taken (Attach memo or equivalent proof) ner investigation needed from additional areas. (Include proof of the transfer of information) tional information added to method reference — Pharm. option only (Attach proof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.                        | Must investigation be complete before reporting further data to clients? Yes N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>5</b> .                | In addition to the samples listed above, would any additional data already reported clients be affected by this problem? Yes No If yes, please explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Investigator(s):          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Departmental i<br>"Group" | Review*:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Potem to OA t             | v: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

2084.01 05/29/01

Figure C1-2

Element C1
Revision No. 1
Date: 07/01/04
Page 4 of 20

Performance Summary

VAP Periodic #: 12

APG Lab Code: 6056 VAP Lab Code: CL0070

Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601



APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancuster, PA 17601

VAP Periodic # 12

Page 2 Study Closed on 09/18/2003

| Product: Semi-Volatile Organic | ile Organic Lot Number: 37286-37287 |      |                       | Date Tested: 8/21/2003 |         |            |               |  |
|--------------------------------|-------------------------------------|------|-----------------------|------------------------|---------|------------|---------------|--|
| Analyle                        | Reported Assigned Value             |      | Mean Units Acceptance |                        | Z-Score | Evalention |               |  |
| 1,2,4-Trichlorobenzene         | 132.                                | 164  | ug/L                  | 48.8-173               | 0.871   | EPA8270C   | Acceptable    |  |
| 1,2-Dichlorobenzene            | 76.7                                | 96.1 | ug/L                  | 31-110                 | 0.412   | EPA8270C   | Acceptable    |  |
| 1,3-Dichlorobenzene            | 44.4                                | 55.7 | ug/L                  | 24.4-55.7              | 1.13    | EPA8270C   | Acceptable    |  |
| 1,4-Dichlorobonzene            | 48.3                                | 61.2 | ug/L                  | 20-68.6                | 0.425   | EPA8270C   | Acceptable    |  |
| 2,4,6-Trichlorophenol          | 46.7                                | 49.4 | ug/L                  | 21.9-57.8              | 0.993   | EPA8270C   | Acceptable    |  |
| 2,4-Dichlorophenol             | 89.0                                | 100  | ug/L                  | 54.4-103               | 1.11    | EPA8270C   | Acceptable    |  |
| 2,4-Dimethylphenol             | 19.2                                | 24.5 | ug/L                  | 4.94-26.1              | 0.902   | EPA8270C   | Acceptable    |  |
| 2,4-Dinitrophenol              | 106.                                | 126  | ug/L.                 | 5.91-153               | 0.92    | EPA8270C   | Acceptable    |  |
| 2,4-Dinitrotoluene (2,4-DNT)   | 186.                                | 191  | ug/L.                 | 69.5-243               | 0.893   | EPA8270C   | Acceptable    |  |
| 2,6-Dinitrotoluene (2,6-DNT)   | 99.6                                | 113  | ug/L.                 | 50.6-141               | 0.205   | EPA8270C   | Acceptable    |  |
| 2-Chloronaphthalene            | 94.8                                | 110  | ug/L                  | 49.8-119               | 0.756   | EPA8270C   | Acceptable    |  |
| 2-Chiorophenol                 | 122.                                | 132  | ug/L                  | 46.7-157               | 0,939   | EPA8270C   | Acceptable    |  |
| 2-Methyl-4,6-Dinitrophenol     | 78.5                                | 86.3 | ug/L                  | 38.3-98.5              | 0.863   | EPA8270C   | Acceptable    |  |
| 2-Nitrophenoi                  | 138.                                | 149  | ug/L                  | 48.9-197               | 0.524   | EPA8270C   | Acceptable    |  |
| 3,3'-Dichlorobenzidine         | <1.0                                |      | ug/L                  |                        |         | EPA8270C   | No Evaluation |  |
| L-Bromophenyl phonyl ether     | <1.0                                |      | ug/L                  |                        |         | EPA8270C   | No Evaluation |  |
| 4-Chloro-3-methylphenol        | 134.                                | 150  | ug/L                  | 68,9-172               | 0.647   | EPA8270C   | Acceptable    |  |
| 4-Chlorophenyl phenyl ether    | <1.0                                |      | ug/L                  |                        |         | EPA8270C   | No Evaluation |  |
| 4-Nitrophenol                  | <10.0                               | 12.5 | ug/L                  | 0-12.5                 |         | EPA8270C   | Unacceptable  |  |
| Acenaphthene                   | 65.2                                | 70.1 | ug/L                  | 31.1-85.1              | 0.676   | EPA8270C   | Acceptable    |  |
| Acenaphthylene                 | 69.3                                | 71.3 | ug/L                  | 32.2-83.1              | 1.18    | EPA8270C   | Acceptable    |  |
| Anthracene                     | 68.7                                | 79.3 | ug/L                  | 37.3-91.9              | 0.387   | EPA8270C   | Acceptable    |  |
| Benzidine                      | <20.                                |      | ug/L                  |                        |         | EPA8270C   | No Evaluation |  |



APG Customer Code 6056 VAP Lnb Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 3
Study Closed on 09/18/2003

| Product: Semi-Volatile Organic |                   | Lot Number: 37286-37287 |            |                 | Date Tested: 8/21/2003 |             |               |  |
|--------------------------------|-------------------|-------------------------|------------|-----------------|------------------------|-------------|---------------|--|
| Analyte                        | Reported<br>Value | Assigned Value          | Mcon Units | Acceptance Rang | e Z-Score              | Test Method | Evaluation    |  |
| Benzo(n)antiracene             | 130.              | 137                     | ug/L       | 53.9-175        | 0.681                  | BPA8270C    | Acceptable    |  |
| Benza(u)pyrene                 | 8.98              | 10.9                    | ug/L       | 0-14.4          | 0.76                   | EPA8270C    | Acceptable    |  |
| Benzo(b)fluoranthene           | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Benza(g,h,i)perylene           | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Benzo(k)fluoranthene           | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Bis(2-Chloroethoxy)methane     | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Bis(2-Chloroethyl)ether        | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Bis(2-Chloroisopropyl)ether    | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Bis(Z-Ethylhexyl)phthalate     | 187,              | 172                     | ug/L       | 65:5-219        | 1.48                   | EPA8270C    | Acceptable    |  |
| Butyl benzyl phthalate         | 91.7              | 157                     | ug/L       | 11.6-219        | 0.58                   | EPA8270C    | Acceptable    |  |
| Chrysens                       | 135.              | 145                     | ug/L       | 62.4-182        | 0.56                   | EPA8270C    | Acceptable    |  |
| Di-n-butyl phthalate           | 66.3              | 84.5                    | ug/L       | 29.4-116        | 0.387                  | EPA8270C    | Acceptable    |  |
| Di-n-octyl phthalate           | 62.7              | 67.7                    | ug/L       | 18.4-93.6       | 0.459                  | EPA8270C    | Acceptable    |  |
| Dibenzo(a,h)anthracene         | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |
| Dicthyl phthalate              | 117.              | 171                     | սց/Լ       | 22.2-233        | 0.27                   | EPA8270C    | Acceptable    |  |
| Dimethyl phthalate             | 46.1              | 134                     | ug/L       | 0-189           | 0.997                  | EPA8270C    | Acceptable    |  |
| Fluoranthene                   | 56.2              | 62.4                    | ug/L       | 31.9-76.7       | 0.219                  | EPA8270C    | Acceptable    |  |
| Fluorenc                       | 132.              | 139                     | ug/L       | 66.5-169        | 0.704                  | EPA8270C    | Acceptable    |  |
| Hexachforobenzene              | 49,2              | 55.8                    | ug/L       | 27.4-66.7       | 0.276                  | EPA8270C    | Acceptable    |  |
| Hexachlerobutadiene            | 40.3              | 60,9                    | ug/L       | 20.6-63.1       | 0.194                  | EPA8270C    | Acceptable    |  |
| Hexachlorocyclopentadiene      | 21.6              | 40.3                    | ug/L       | 0-50.3          | 0.214                  | EPA8270C    | Acceptable    |  |
| Hexachloroethane               | 85.9              | 124                     | ug/L       | 20.8-147        | 0.0776                 | EPA8270C    | Acceptable    |  |
| Indeno(1,2,3-cd)pyrene         | <1.0              |                         | ug/L       |                 |                        | EPA8270C    | No Evaluation |  |



APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Study Closed on 09/18/2003

| Product: Semi-Volatile Organic |          | Lot Number:       | 37286-37287    |                 | מ         | ate Tested: | 8/21/2003     |
|--------------------------------|----------|-------------------|----------------|-----------------|-----------|-------------|---------------|
| Analyte                        | Reported | Assigned<br>Value | Mean - Units - | Acceptance Rang | e Z-Score | Test Mellio | d Evaluation  |
| Isophorone                     | 101.     | 107               | ug/L           | 34-141          | 0.644     | EPAB270C    | Acceptable    |
| N-nitrosodi-n-propylamine      | <1.0     |                   | ug/L           |                 |           | EPA8270C    | No Evaluation |
| N-nitrosodimethylamine         | <2.0     |                   | ug/L           |                 |           | BPA8270C    | No Evaluation |
| N-nitrosodiphenylamine         | <2.0     |                   | ug/L           |                 |           | BPA8270C    | No Evaluation |
| Naphthalens                    | 70.3     | 80.5              | ug/L           | 33.6-86.7       | 0.981     | EPA8270C    | Acceptable    |
| Nitrobenzene (NB)              | 81.7     | 87.3              | ug/L           | 34.8-108        | 0.725     | EPA8270C    | Acceptable    |
| Pentachlorophenol              | 143.     | 176               | ug/L           | 53.8-236        | 0.0568    | EPA8270C    | Acceptable    |
| Phenanthrene                   | 72.9     | 82                | ug/L           | 37.9-101        | 0.279     | EPAB270C    | : Acceptable  |
| Phenol                         | 71.5     | 186               | og/L           | 8.68-186        | 0.547     | EPAB270C    | : Acceptable  |
| Pyrene:                        | 168.     | 173               | ug/L           | 75.2-220        | 0.712     | EPA82700    | Acceptable-   |



Figure C1-2 - Continued

Element C1
Revision No. 1
Date: 07/01/04
Page 8 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Study Closed on 09/18/2003

| Product: Total Cyanide | L        | ol Number:        | 37272      |                  | I       | late Tested: | 8/20/2003        |
|------------------------|----------|-------------------|------------|------------------|---------|--------------|------------------|
| Analyte:               | Reported | Assigned<br>Value | Mean Units | Acceptance Range | Z-Score | Test Meth    | od Eyaluation !! |
| Total Cyanide          | 0.794    | 0.791             | mg/L       | 0.582-0.984      | 0.141   | 335.2(CLP    |                  |

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Loncaster, PA 17601

VAP Periodic # 12

Page 6
Study Closed on 09/18/2003

| Product: Minerals (No. M | ig, K, Ca, CL, SO4) | Lot Number: | 37276-37277 |                 | 1         | Date Tested: | 8/22/2003     |
|--------------------------|---------------------|-------------|-------------|-----------------|-----------|--------------|---------------|
| Amiyte                   | Reporte<br>Value    |             | Mean Units  | Acceptance Rong | e Z-Score | Test Melho   | d Evaluation  |
| Calcium                  | 42.3                | 42.8        | mg/L        | 38.9-47.9       | 0.629     | 6010B        | Acceptable    |
| Chloride                 |                     | 191         | mg/L        | 177-205         |           |              | No Evaluation |
| Magnesium                | 30.3                | 30.3        | mg/L        | 27-33.4         | 0.0806    | 6010B        | Acceptable    |
| Potassium                | 15.7                | 15.8        | mg/L        | 13.8-17.8       | 0.128     | 6010B        | Acceptable    |
| Sodium                   | 69.9                | 73.9        | mg/L        | 67.7-80         | 1.68      | 6010B        | Acceptable    |
| Sulfate                  |                     | 123         | mg/L        | 0-211           |           |              | No Evaluation |



Element C1
Revision No. 1
Date: 07/01/04
Page 10 of 20

APG Customer Code 6056 VAP Lub Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 7
Study Closed on 09/18/2003

| Product:  | Trace Metals |                   | Lot Number: | 37325-37326 |                  |         | Date Tested: | 8/22/2003    |
|-----------|--------------|-------------------|-------------|-------------|------------------|---------|--------------|--------------|
| Analyte   |              | Reporter<br>Value | L Assigned. | Mean Units  | Acceptance Range | Z-Scare | Test Method  | l Evaluation |
| Aluminum  | 1            | 3510.             | 3560        | ug/L        | 3140-3950        | 0.19    | 60108        | Acceptable   |
| Antimony  |              | 537.              | 524         | ug/L        | 385-613          | 0.862   | 6010B        | Acceptable   |
| Arsenic   |              | 283.              | 299         | vig/L       | 256-345          | 0.988   | 6010B        | Acceptable   |
| Barium    |              | 1410.             | 1430        | ug/L        | 1250-1590        | 0.149   | 6010B        | Acceptable   |
| Beryllium |              | 167.              | 171         | ug/L        | 148-190          | 0.248   | 6010B        | Acceptable   |
| Boron     |              | 583.              | 574         | ug/L        | 512-654          | 0       | 6010B        | Acceptable   |
| Cadmium   |              | 276.              | 285         | ug/L        | 248-319          | 0.588   | 6010B        | Acceptable   |
| Chromiun  | n            | 460.              | 468         | ug/L        | 416-521          | 0.39    | 6010B        | Acceptable   |
| Cobalt    |              | 945.              | 972         | ug/L        | 890-1070         | 1.03    | 6010B        | Acceptable   |
| Соррег    |              | 260.              | 260         | ug/L        | 259-316          | 2.55    | 6010B        | Acceptable   |
| iron      |              | 543.              | 600         | ug/L        | 521-681          | 1.87    | 6010B        | Acceptable   |
| Lead      |              | 1220.             | 1250        | ug/L        | 1120-1380        | 0.602   | 6010B        | Acceptable   |
| Manganes  | se           | 1330.             | 1350        | ug/L        | 1230-1480        | 0.628   | 6010B        | Acceptable   |
| Mercury   |              | 6.85              | 6.51        | ug/L        | 5.04-7.96        | 0.619   | 7470a        | Acceptable   |
| Molybder  | nom          | 210.              | 196         | ug/L        | 171-221          | 1.44    | 6010B        | Acceptable   |
| Nickel    |              | 1200.             | 1190        | ug/L        | 1050-1280        | 0.883   | 6010B        | Acceptable   |
| Selenium  |              | 719.              | 742         | ug/L        | 608-840          | 0.111   | 6010B        | Acceptable   |
| Silver    |              | 264.              | 268         | սց/Լ        | 235-302          | 0.31    | 6010B        | Acceptable   |
| Strontium | l            | 133.              | 134         | üg/L        | 111-153          | 0.123   | 6010B        | Acceptable   |
| Thallium  |              | 79.2              | 77          | ug/L        | 61.8-90.2        | 0.582   | 6010B        | Acceptable   |
| Titanium  |              | 260.              | 256         | ug/L        | 225-283          | 0.531   | 6010B        | Acceptable   |
| Vanadium  | 3            | 2360.             | 2400        | ug/L        | 2130-2580        | 0       | 60108        | Acceptable   |
| Zinc      |              | 820.              | 840         | ug/L        | 758-930          | 0.719   | 6010B        | Acceptable   |



Element C1
Revision No. 1
Date: 07/01/04
Page 11 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Study Closed on 09/18/2003

Page

| Product: Diesel Range Organics (801-<br>8015B) | 5A, L             | ot Number:        | 37280      |                  | Do      | le Tested: | 8/20/2003 |            |
|------------------------------------------------|-------------------|-------------------|------------|------------------|---------|------------|-----------|------------|
| Analyte                                        | Reported<br>Value | Assigned<br>Value | Meon Units | Acceptance Range | 7-Score | Test Meth  | od – Ev   | limilian . |
| TPH Diesel (DRO)                               | 1.67              | 1.85              | mg/L       | 0-7,33           | 0.0138  | E015B      | Ac        | eptable    |

Element C1
Revision No. 1
Date: 07/01/04
Page 12 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Study Closed on 09/18/2003

Page 9

| Product: Gasotine Range Organic<br>8015B) | s (8015A,         | Lot Number:       | 37281      |                 | D         | ile Tested: | 8/20/2003       |
|-------------------------------------------|-------------------|-------------------|------------|-----------------|-----------|-------------|-----------------|
| Analyte                                   | Reported<br>Value | Assigned<br>Value | Mean Units | Acceptance Rang | e Z-Score | Test Meth   | ed Zvaluation – |
| TPH Gasoline (GRO)                        | 2.5               | 3.04              | mg/L       | 1.01-3.91       | 0.071     | 8015B       | Acceptable      |

Element C1
Revision No. 1
Date: 07/01/04
Page 13 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 10 Study Closed on 09/18/2003

| Product: Chlorimated Pesticides |                   | Lot Number:       | 37288-37289 |                  | Ø       | ate Tested: | 8/24/2003       |
|---------------------------------|-------------------|-------------------|-------------|------------------|---------|-------------|-----------------|
| Atialyte                        | Reported<br>Value | Assigned<br>Value | Mean Units  | Acceptance Range | Z-Score | , Test Meth | od Evaluation : |
| 4,4'-DDD                        | 2.88              | 1.88              | ug/L        | 1.04-2.51        | 3.88    | 8081A       | Unacceptable    |
| 4,4'-DDE                        | 0.423             | 0.33              | ug/L        | 0.167-0.427      | 2.5     | 8081A       | Acceptable      |
| 4,4'-DDT                        | 0.974             | 0.721             | ug/L        | 0.361-0.955      | 2.75    | 8081A       | Unacceptable    |
| Aldrin                          | 1.73              | 1.68              | ug/L.       | 0.557-2.14       | 1:24    | 8081A       | Acceptable      |
| alpha-BHC                       | 5.30              | 4.25              | ug/L        | 1.97-5.53        | 2.24    | 8081A       | Acceptable      |
| bera-BHC                        | 13.0              | 12.7              | ug/L        | 5.73-17.3        | 0.67    | A1808       | Acceptable      |
| delta-BHC                       | 50.7              | 54.9              | ug/L        | 16.3-76          | 0.397   | 8081A       | Acceptable      |
| Dieldrin                        | 1.76              | 1.48              | ug/L        | 0.852-1.96       | 1.68    | 8081A       | Acceptable      |
| Endosulfan I                    | 22.0              | 22.4              | ug/L        | 10.9-31.2        | 0.255   | 8081A       | Acceptable      |
| Endosulfan II                   | 67.7              | 71.1              | ug/L        | 19.1-109         | 0.207   | 8081A       | Acceptable      |
| Endosulfen sulfate              | 12.5              | 11.4              | ug/L        | 3.53-17.3        | 0.789   | A1808       | Acceptable      |
| Endrin                          | 0.81              | 20.2              | ug/L        | 8.68-28.8        | 0.205   | 8081A       | Acceptable      |
| Endrin aldehyde                 | 12.9              | 12.7              | ug/L        | 5.16-17.6        | 0.622   | 8081A       | Acceptable      |
| gemma-BHC                       | 15.4              | 16.5              | ug/L        | 6.53-22.6        | 0.256   | 8081A       | Acceptable      |
| Heptachior                      | 3.13              | 3.19              | ug/L        | 1.09-4.19        | 0.815   | A1808       | Acceptable      |
| Heptachlor epoxide (beta)       | 1.60              | 1.43              | ag/L        | 0.804-1.76       | 1.72    | A1808       | Acceptable      |
| Methoxychlor                    | 24.2              | 16.5              | ug/L        | 8.07-22,1        | 3.35    | 8081A       | Unacceptable    |



APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 11 Study Closed on 09/18/2003

| Product: PAH (8100, 8310, 610) | 1        | ot Number:        | 37290 |         |                  |         | Date Tested: | 8/26/2003       |
|--------------------------------|----------|-------------------|-------|---------|------------------|---------|--------------|-----------------|
| Amilyid                        | Reported | Assigned<br>Volue | Meon  | inits - | Acceptance Runge | Z-Score | Test Meth    | od - Evoluation |
| Acenaphthene                   | 19.2     | 21.9              |       | ug/L    | 7.99-25.9        | 0.632   | 8310         | Acceptable      |
| Acenaphthylene                 | 5.49     | 6.06              |       | ug/L    | 1.19-7.85        | 0.752   | 8310         | Acceptable      |
| Anthracene                     | 0.465    | 0.53              |       | ug/L    | 0.00106-0.656    | 1.08    | 8310         | Acceptable      |
| Benzo(u)antivacene             | 1.16     | 1.38              |       | ug/L    | 0.193-2.27       | 0.174   | 8310         | Acceptable      |
| Benzo(a)pyrene                 | 0.964    | 1.38              |       | ug/L    | 0-6.14           | 0.118   | 8310         | Acceptable      |
| Benzo(b)fluoranthene           | <0.04    |                   |       | ug/L    |                  |         | 8310         | No Evaluation   |
| Benzo(g,h,i)perylene           | . <0.10  |                   |       | ug/L    |                  |         | 8310         | No Evaluation   |
| Benzo(k)fluoranthene           | <0.02    |                   |       | ug/L    |                  |         | 8310         | No Evaluation   |
| Chrysene                       | 1.03     | 1.17              |       | ug/L    | 0.397-1.54       | 0.281   | 8310         | Acceptable      |
| Dibenzo(a,h)anthracene         | <0.04    |                   |       | ug/L    |                  |         | 8310         | No Evaluation   |
| Fluoranthene                   | 0,804    | 0.992             |       | ug/L    | 0.456-1.08       | 0.317   | 8310         | Acceptable      |
| Pluorene                       | 12.3     | 14.9              |       | ug/L    | 6.39-16.8        | 0.347   | 8310         | Acceptable      |
| indena(1,2,3-cd)pyrene         | <0.08    |                   |       | ug/L    |                  |         | 8310         | No Evaluation   |
| Naphthalene                    | 19.8     | 24.1              |       | ug/L    | 7.72-27.3        | 0.607   | 8310         | Acceptable      |
| Phenanthrene                   | 0.958    | 1.06              |       | ug/L    | 0.544-1.51       | 0.385   | 8310         | Acceptable      |
| Pyrene                         | 0,911    | 1.04              |       | ug/L    | 0.19-1.59        | 0.0775  | 8310         | Acceptable      |

Revision No. 1 Date: 07/01/04

APG Customer Code 6056 VAP Lab Code \_ CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 12 Study Closed on 09/18/2003

| Product: PCB's        | Lo                | t Number:          | 37291      |                 | Da        | le Tested: | 8/21/2003     |
|-----------------------|-------------------|--------------------|------------|-----------------|-----------|------------|---------------|
| Analyte               | Reported<br>Value | Assigned.<br>Value | Mean Units | Acceptance Rang | e Z-Score | Test Meth  | od Evaluation |
| Aroclor 1232 Sample 1 | <0.10             |                    | ug/L       | v '2            |           | 8082       | No Evaluation |
| Aroclor 1248 Sample 1 | <0.10             |                    | ug/L       |                 |           | 8082       | No Evaluation |
| Aroctor 1254 Sample 1 | <0.10             |                    | ug/L       |                 |           | 8082       | No Evaluation |
| Aroclor 1260 Sample I | 2.58              | 2.68               | ug/L       | 0-34.5          | 0.495     | 8082       | Acceptable    |

Element C1
Revision No. 1
Date: 07/01/04
Page 16 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 13 Study Closed on 09/18/2003

| Product:    | Volutiles (8010B&8020A,8000//<br>Ser,601&602,624) | B200             | Lot Number:         | 37218  |       |                 |           | Date Tested: | 8/27/2003     |
|-------------|---------------------------------------------------|------------------|---------------------|--------|-------|-----------------|-----------|--------------|---------------|
| Analyte     |                                                   | Reporte<br>Value | d Assigned<br>Value | Mean / | Units | Acceptance Rang | e Z-Score | Test Meth    | ed Evaluation |
|             | nloroethane                                       | 160.             | 203                 |        | ug/L  | 140-259         | 1.69      | 8021B        | Acceptable    |
| 1,1,2,2-Te  | trachloroethane                                   | 95.9             | 112                 |        | ug/L  | 77.3-146        | 1.2       | 8021B        | Acceptable    |
| 1.1,2-Trick | loroethane                                        | 160.             | 173                 |        | ug/L  | 124-218         | 0.608     | 8021B        | Acceptable    |
| 1,1-Dichle  | methane                                           | <0.2             |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| 1,1-Dichlo  | roethene (Vinylidene chloride)                    | 190.             | 223                 |        | ug/L  | 132-325         | 1.04      | 8021B        | Acceptable    |
| 1,2-Dichle  | orobenzene                                        | 190.             | 207                 |        | ug/L  | 146-258         | 0.553     | 802.1B       | Acceptable    |
| 1,2-Dichio  | roethane                                          | 0.300            |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| 1,2-Dichle  | propropane                                        | 210.             | 244                 |        | ug/L  | 188-294         | 1.51      | 8021B        | Acceptable    |
| 1,3-Dichle  | robenzene                                         | 0.295            |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| 1,4-Dichlo  | probenzene                                        | 170.             | 201                 |        | ug/L  | 130-242         | 0.737     | 8021B        | Acceptable:   |
| 2-Chloroc   | thyl vinyl ether                                  | <1.0             |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| Benzene     |                                                   | 190.             | 215                 |        | ug/L  | 165-266         | 1.32      | 8021B        | Acceptable    |
| Bromodic    | hloromethane                                      | <0.2             |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| Bromofor    | m                                                 | 240.             | 224                 |        | ug/L  | 152-310         | 0.296     | 8021B        | Acceptable    |
| Bromome     | thone                                             | <0.5             | •                   |        | ug/L  |                 |           | 8021B        | No Evaluation |
| Carbon ter  | rochloride                                        | 190.             | 244                 |        | ug/L  | 135-360         | 1.31      | 8021B        | Acceptable    |
| Chlorober   | zene                                              | 210.             | 232                 |        | ug/L  | 170-287         | 0.841     | 8021B        | Acceptable    |
| Chloroeth   | ane                                               | <0.2             |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| Chlorofon   | m                                                 | 170.             | 208                 |        | ug/L  | 135-278         | 1.34      | 8021B        | Acceptable    |
| Chlorome    | thone                                             | <0.5             |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| cis-1,3-Di  | chloropropene                                     | <0.2             |                     |        | ug/L  |                 |           | 8021B        | No Evaluation |
| Dibromoc    | hloromethane                                      | 140.             | 145                 |        | ug/L  | 100-191         | 0.341     | 8021B        | Acceptable    |



Anglytical Products Group, Inc. 2730 Washington Beufeverd • Belgre, Ohio 45714 • 800.272.4442 • Fax 740.423.5588 • www.APGQA.com

Element C1
Revision No. 1
Date: 07/01/04
Page 17 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Poge 14 Study Closed on 09/18/2003

| Product:                                                                    | Volatiles (8010B&8020A,8000<br>Ser,601&602,624)                                                                                                                                                                                                            | 1/8200                                                     | Lot Number:                                | 37218           |                                       |                                              |                                 | Date Tested:                                          | 8/27/2003 |                                                                       |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|-----------------|---------------------------------------|----------------------------------------------|---------------------------------|-------------------------------------------------------|-----------|-----------------------------------------------------------------------|
| Analyto                                                                     |                                                                                                                                                                                                                                                            | Reporte<br>Value                                           | d Assigned<br>Volue                        | Mean I          | Jülts .                               | Acceptance Rongo                             | Z-Score                         | Test Meth                                             | od -      | Evaluation                                                            |
| Dichlorodi                                                                  | illuoromethane                                                                                                                                                                                                                                             | <0.2                                                       |                                            |                 | ug/L                                  |                                              |                                 | 8021B                                                 |           | No Evaluation                                                         |
| Ethylbenza                                                                  | ene                                                                                                                                                                                                                                                        | 61.3                                                       | 61.5                                       |                 | ug/L                                  | 40.4-78.7                                    | 0.229                           | 8021B                                                 |           | Acceptable                                                            |
| Methylene                                                                   | chloride (Dichloromethane)                                                                                                                                                                                                                                 | 57.6                                                       | 65.9                                       |                 | ug/L                                  | 40.2-92                                      | 0.85                            | 8021B                                                 |           | Acceptable                                                            |
| Tetrachlor                                                                  | oethene                                                                                                                                                                                                                                                    | 150.                                                       | 194                                        |                 | ug/L                                  | 100-249                                      | 0.865                           | 8021B                                                 |           | Acceptable                                                            |
| Toluene                                                                     |                                                                                                                                                                                                                                                            | 210.                                                       | 241                                        |                 | ug/L                                  | 172-301                                      | 1.04                            | 8021B                                                 |           | Acceptable                                                            |
| Trans-1,2-                                                                  | Dichloroethene                                                                                                                                                                                                                                             | 85.3                                                       | 103                                        |                 | ug/L                                  | 70.7-136                                     | 1.4                             | 8021B                                                 |           | Acceptable                                                            |
| trans-1,3-(                                                                 | Dichloropropene                                                                                                                                                                                                                                            | <0.2                                                       |                                            |                 | ug/L                                  |                                              |                                 | 8021B                                                 |           | No Evaluation                                                         |
| Trichloroa                                                                  | thene                                                                                                                                                                                                                                                      | 62.7                                                       | 64                                         |                 | ug/L                                  | 44.1-80.9                                    | 0.028                           | 8021B                                                 |           | Acceptable                                                            |
| Trichtorof                                                                  | luoromethane                                                                                                                                                                                                                                               | <0.2                                                       |                                            |                 | ug/L                                  |                                              |                                 | 8021B                                                 |           | No Evaluation                                                         |
| *********                                                                   | 100,0111001010                                                                                                                                                                                                                                             |                                                            |                                            |                 | -0 -                                  |                                              |                                 |                                                       |           |                                                                       |
| Vinyl chlo                                                                  |                                                                                                                                                                                                                                                            | <0.2                                                       |                                            |                 | ug/L                                  |                                              |                                 | 8021B                                                 |           | No Evoluation                                                         |
| Vinyl chiq                                                                  |                                                                                                                                                                                                                                                            | )/8200                                                     | Lot Number:                                | 37219           |                                       |                                              |                                 | 8021B<br>Date Tested:                                 | 8/27/2003 | No Evaluation                                                         |
| Vinyl chic                                                                  | vide<br>Volatiles (8010B&8020A,800                                                                                                                                                                                                                         |                                                            |                                            | 37219           |                                       | Acceptance Range                             | 2 score                         | Date Tested:                                          |           | No Evaluation                                                         |
| Vinyl chlo<br>Product:<br>Analyle                                           | vide<br>Volatiles (8010B&8020A,800                                                                                                                                                                                                                         | )/8200<br>                                                 | d Assigned                                 | 37219           | ug/L                                  | Acceptance Range                             | Z-Score                         | Date Tested:                                          |           |                                                                       |
| Vinyl chlo<br>Product:<br>Analyle                                           | vide<br>Volatiles (8010B&8020A,800(<br>Ser,601&602,624)                                                                                                                                                                                                    | )/8200<br>Reporte<br>Value                                 | d Assigned<br>Value                        | 37219           | ug/L.<br>Uniis                        | HARRIST CONTRACTOR                           | September.                      | Date Tested:<br>Test Meth                             |           | Eyaluation                                                            |
| Vinyl chiq<br>Product:<br>Analyle<br>1,1,1-Tric<br>1,1,2,2-Te               | vide<br>Volatiles (8010B&8020A,800(<br>Ser,601&602,624)                                                                                                                                                                                                    | 78200<br>Reporte<br>Value<br>270.                          | d Assigned<br>Value<br>236                 | 37219<br>Mean — | ug/L<br>Units<br>ug/L                 | 162-301                                      | 1.46                            | Date Tested:<br>Test Melli<br>82608                   |           | Evaluation                                                            |
| Vinyi chio<br>Product:<br>Analyie<br>1,1,1-Tric<br>1,1,2,2-Te<br>1,1,2-Tric | vide Volatiles (8010B&8020A,8000 Ser,601&602,624) hloroethane trachloroethane hloroethane                                                                                                                                                                  | 7/8200<br>Reporte<br>Value<br>270,<br>145,                 | d Assigned<br>Value<br>236<br>149          | 37219<br>Mean   | ug/L<br>Units<br>ug/L<br>ug/L         | 162-301<br>101-196                           | 1.46<br>0.163                   | Date Tested: Test Media 82608 82608                   |           | Evaluation  Acceptable Acceptable                                     |
| Product: Analyte 1,1,1-Trici 1,1,2-Trici 1,1-Dichic                         | vide Volatiles (8010B&8020A,8000 Ser,601&602,624) hloroethane trachloroethane hloroethane                                                                                                                                                                  | 78200<br>Reporte<br>Value<br>270,<br>145,<br>54.0          | d Assigned<br>Value<br>236<br>149          | 37219<br>Mean   | ug/L<br>Units<br>ug/L<br>ug/L<br>ug/L | 162-301<br>101-196                           | 1.46<br>0.163                   | Date Tested:  Test Meth 82608 82608 82608             |           | Evaluation  Acceptable Acceptable Acceptable                          |
| Product: Analyte 1,1,1-Trici 1,1,2-Trici 1,1,2-Trici 1,1-Dichic 1,1-Dichic  | Volatiles (8010B&8020A,8000<br>Ser,601&602,624)<br>hioroethane<br>trachioroethane<br>hioroethane<br>proethane                                                                                                                                              | 7/8200<br>Reporte<br>Value<br>270,<br>145,<br>54,0<br><1.0 | d. Assigned<br>Value<br>236<br>149<br>53.2 | 37219<br>Mean   | ug/L<br>Units<br>ug/L<br>ug/L<br>ug/L | 162-301<br>101-196<br>38.8-66.7              | 1.46<br>0.163<br>0.221          | Date Tested:  Test Meth 82608 82608 82608 82608       |           | Evaluation  Acceptable Acceptable Acceptable No Evaluation            |
| Product: Analyte 1,1,1-Trici 1,1,2-Trici 1,1,2-Trici 1,1-Dichic 1,1-Dichic  | Volatiles (8010B&8020A,8000 Ser,601&602,624)  hiloroethane trachloroethane hiloroethane proethane (Vinylidene chloride) probenzene | Reports<br>Value<br>270.<br>145.<br>54.0<br><1.0           | d. Axrigned 236 149 53.2 59.6              | 37219<br>Mean   | ug/L Units  ug/L ug/L ug/L ug/L       | 162-301<br>101-196<br>38.8-66.7<br>36.5-87.8 | 1.46<br>0.163<br>0.221<br>0.966 | Date Tested:  Test Meth 82608 82608 82608 82608 82608 |           | Evaluation  Acceptable Acceptable Acceptable No Evaluation Acceptable |

Analytical Products Group, Inc. 2730 Washington Boulevard • Belgre, Onio 45714 • 800.272.4442 • Fax 740.423.5588 • www.APGQA.com

Element C1
Revision No. 1
Date: 07/01/04
Page 18 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 15 Study Closed on 09/18/2003

| Product: Volatiles (8010B&8020A,800<br>Ser,601&602,624) | 10/8200          | Lot Number: | 37219      |                 | 1         | Date Tested: | 8/27/2003      |
|---------------------------------------------------------|------------------|-------------|------------|-----------------|-----------|--------------|----------------|
| Analyte:                                                | Reporte<br>Value |             | Mean Units | Acceptance Rung | e Z-Score | Tesf Meth    | od) Evaluation |
| 1,3-Dichlorobenzene                                     | <1.0             |             | ug/L       |                 |           | 8260B        | No Evaluation  |
| 1,4-Dichlorobenzene                                     | 88.6             | 90.8        | ug/L       | 59.8-109        | 0.428     | 8260B        | Acceptable     |
| 2-Chloroethyl vinyl ether                               | <2.0             |             | og/L       |                 |           | 8260B        | No Evaluation  |
| Benzene                                                 | 238.             | 214         | ug/L       | 164-265         | 1.17      | 8260B        | Acceptable     |
| Bromodichloromethane                                    | <2.0             |             | ug/L       |                 |           | 8260B        | No Evaluation  |
| Bromoform                                               | 156.             | 146         | úg/L       | 98.8-201        | 0.302     | 82608        | Acceptable     |
| Bromomethane                                            | <1.0             | •           | ug/L       |                 |           | 8260B        | No Evaluation  |
| Carbon tetrachioride                                    | 97.2             | 84.3        | սը/Լ       | 47.3-122        | 0.882     | 8260B        | Acceptable     |
| Chlorobenzene                                           | 215.             | 209         | ug/L       | 154-259         | 0.443     | 8260B        | Acceptable     |
| Chloroethane                                            | <1.€             |             | ug/L       |                 |           | 8260B        | No Evaluation  |
| Chloroform                                              | 143.             | 130         | ug/L       | 84,4-174        | 0.809     | 8260B        | Acceptable     |
| Chloromethane                                           | <1.0             |             | ug/L       |                 |           | 8260B        | No Evaluation  |
| cis-1,3-Dichtoropropens                                 | <1.0             |             | ug/L       |                 |           | 8260B        | No Evaluation  |
| Dibromochloromethane                                    | 214.             | 207         | ug/L       | 143-273         | 0.238     | 8260B        | Acceptable     |
| Dichlorodifluoromethane                                 | <2.0             |             | ug/L       |                 |           | 8260B        | No Evoluation  |
| Ethylbenzene                                            | 134.             | 128         | ug/L       | 78,3-167        | 0.643     | 8260B        | Acceptable     |
| Methylene chloride (Dichloromethane)                    | 83.7             | 76.8        | ug/L       | 47.6-106        | 0.602     | 8260B        | Acceptable     |
| Tetrachloroethene                                       | 177.             | 185         | ug/L       | 95.5-238        | 0.364     | 8260B        | Acceptable     |
| Toluene                                                 | 53.5             | 52.2        | ug/L       | 34.1-66.7       | 0.491     | 8260B        | Acceptable     |
| Trans-1,2-Dichloroethene                                | 109.             | 95.9        | ug/L       | 65.7-126        | 1.1       | 8260B        | Acceptable     |
| trans-1,3-Dichloropropene                               | <1.0             |             | ug/L       |                 |           | 8260B        | No Evaluation  |
| Trichloroethene                                         | 135.             | 121         | ug/L       | 80.1-154        | 1.27      | 8260B        | Acceptable     |



Analytical Products Group, Inc. 2730 Washington Boulovard • Belgre, Ohio 45714 • 800.272.4442 • Fax 740.423.5588 • www.APGQA.com

Element C1
Revision No. 1
Date: 07/01/04
Page 19 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike

2425 New Holland Pike VAP Periodic # 12 Lancaster, PA 17601

Study Closed on 09/18/2003

Page 16

| Product: Volntiles (8010B&8020A,8<br>Scr,601&602,624) | 809/8200 Lot Number           | : 37219                 | Date Tested:             | 8/27/2003     |
|-------------------------------------------------------|-------------------------------|-------------------------|--------------------------|---------------|
| Analyte                                               | Reported Assigned Value Value | Mean Units Acceptonee F | lange Z-Score Test Metho | ei Evaluation |
| Trichlorofluoromethane                                | <2.0                          | ng/L                    | 8260B                    | No Evaluation |
| Vinyl chloride                                        | <1.0                          | ug/L                    | 8260B                    | No Evaluation |

Element C1
Revision No. 1
Date: 07/01/04
Page 20 of 20

APG Customer Code 6056 VAP Lab Code CL0070 Lancaster Laboratories Inc. 2425 New Holland Pike Lancaster, PA 17601

VAP Periodic # 12

Page 17 Study Closed on 09/18/2003

| Product: TPH 418.1 for IR only | Lot                 | t Number:         | 37293      |                  | D       | ate Tested: | 8/26/2003    |
|--------------------------------|---------------------|-------------------|------------|------------------|---------|-------------|--------------|
| Analyle                        | Reported /<br>Value | Assigned<br>Voice | Menn Units | Acceptance Range | Z-Score | Test Metho  | d Evaluation |
| TPH by 418.1                   | 119.                | 66.2              | mg/L       | 41.5-118         | 2.65    | 418.1       | Unacceptable |

Element C2 Revision No. 1 Date: 07/01/04 Page 1 of 1

#### C2. Reports To Management

Reports of quality status from the Quality Assurance Department to management are made frequently and in various forms. All results from internal or external performance evaluation samples are circulated to management along with corrective action responses. A report of each audit performed is prepared and copied to management. Monthly summaries of data obtained from analysis of quality control check samples are generated via the computerized sample management system. These summaries include mean and standard deviation to aid in assessment of data accuracy and precision. These are reviewed by QA personnel to evaluate trends. Any issues are communicated to the technical department management. Documentation summarizing problems that require investigation and corrective action are completed by group leaders and circulated to management. Through these channels, laboratory management is kept apprised of QA/QC activities.

Any problems or unusual observations that occur during the analysis of samples for a specific project will be listed on the laboratory report and/or in the case narrative delivered with the data package. The items often discussed in this manner include samples with surrogate recovery outside of the acceptance criteria and samples with matrix problems requiring dilution and causing increased detection limits. Where applicable, any corrective action attempted or performed to address the problem will also be presented.

Monthly and quarterly reports are sent to management, which provide them with the quality status on each technical department. The reports detail areas of improvement, observable trends, ICAR summaries, MDL/statistical window status, and a summary of client/agency issues. Reports are also generated for support groups closely tied to technical operations (i.e., Sample Administration, Bottles, and Sample Support).

The laboratory will contact the client for direction regarding major problems. Such as, but not limited to samples listed on the chain of custody but missing from the shipping container, samples which arrive broken or are accidentally broken in the laboratory, and samples with severe matrix problems. The client will be contacted if it is necessary to change any item in the original approved project plan.

### **GROUP D**

### **DATA VALIDATION AND USABILITY**

Element D1 Revision No. 1 Date: 07/01/04 Page 1 of 2

#### D1. Data Review, Verification, and Validation

As stated in Element B10, following review, interpretation, and data reduction by the analyst, the data is transferred into the Laboratory Information Management System (LIMS) by manual entry or direct upload from the analytical data system. This system stores the client information, sample results, and QC results. A security system is in place to control access of laboratory personnel and to provide an audit trail for information changes.

The data is again reviewed by the group leader or another analyst whose function is to provide an independent review before data is verified on the LIMS. The person performing the verification step reviews all data including quality control information before verifying the data. Any errors identified and corrected during the review process are documented and addressed with appropriate personnel to ensure generation of quality data.

If data package deliverables have been requested, the laboratory will complete the appropriate forms (see Appendix A) summarizing the quality control information, and transfer copies of all raw data (instrument printouts, spectra, chromatograms, laboratory notebooks, etc.) to the Data Deliverables Department. This group will combine the information from the various analytical groups and the analytical reports from the LIMS into one package in the client requested format. This package is reviewed for quality, compliance, and conformance to SOPs and QC requirements. Any analytical problems are discussed in the case narrative, which is also included with the data package deliverables.

Element D1 Revision No. 1 Date: 07/01/04 Page 2 of 2

The validation of the data for quality and compliance includes spot checking raw data versus the final report, checking that all pertinent raw data is included and does refer to the samples analyzed, review of all QC results for conformance with the method, and review of the case narrative for description of any unusual occurrences during analysis. This validation is performed using techniques similar to those used by the Sample Management Office for the USEPA's Contract Laboratory Program.

The validation performed by the laboratory does not address usability of the data, which usually requires some knowledge of the site. The laboratory will make every attempt to meet requirements of the project, thus reducing the need to assess usability of the data.

Element D2 Revision No. 1 Date: 07/01/04 Page 1 of 1

#### D2. Verification and Validation Methods

Lancaster Laboratories has procedures in place to verify that instrumental computers and the LIMS perform at the required accuracy, traceability, and security for reporting verified data. Element B10 describes this process in more detail.

Knowledge of the site and sampling methods are necessary to assess data usability. Therefore, overall data validation and assessment of data usability is the responsibility of the client. Lancaster Laboratories will evaluate the analytical data to verify that method and/or project requirements have been met.

#### Page 1 of 4

#### D3. Reconciliation with User Requirements

Data quality requirements are based on the measurement process and the intended use of the data. Lancaster Laboratories evaluates the QC data generated by the following data quality objectives.

<u>Precision</u> – Precision refers to the reproducibility of a method when it is repeated on a second aliquot of the same sample. The degree of agreement is expressed as the relative percent difference (RPD). The RPD will be calculated according to the following equation:

$$RPD = \frac{\left|D_2 - D_1\right|}{\frac{\left(D_1 D_2\right)}{2}} \times 100$$

Where:

 $D_1$  = First sample value

 $D_2$  = Second sample value (Duplicate)

Duplicates will be run on at least 5% of the samples for inorganics analyses and matrix spike duplicates are used for organics analyses. Acceptance criteria are detailed in Element B5. All quality control sample results are entered into the LIMS and compared with acceptance limits. In addition, there is a monthly review of values on the computer QC system. Data obtained from quality control samples is entered onto our LIMS that charts the data and calculates a mean and standard deviation on a monthly basis. The Quality Assurance Department then reviews this data for trends, which may indicate analytical problems. The control charts are graphical methods for monitoring precision and bias over time.

Element D3 Revision No. 1 Date: 07/01/04 Page 2 of 4

Accuracy – Accuracy refers to the agreement between the amount of a compound measured by the test method and the amount present. Accuracy is usually expressed as a percent recovery (R). Recoveries will be calculated according to the following equations:

Surrogate % Recovery = 
$$\frac{Qd}{Qa} \times 100$$

Where:

Qd = Quantity determined by analysis

Qa = Quantity added to sample

Matrix Spike % Recovery = 
$$\frac{(SSR - SR)}{SA} \times 100$$

Where:

SSR = Spiked sample results

SR = Sample results

SA = Spike added

Laboratory Control Sample % Recovery = 
$$\frac{LCS \text{ found}}{LCS \text{ true}} \times 100$$

As directed by the methods, surrogate standards are added to each sample analyzed for organics. Spikes and laboratory control samples will be run on at least 5% of the samples (each batch or Sample Delivery Group [SDG], ≤20 samples). Refer to Element B5 for acceptance criteria for accuracy. The LIMS is programmed to compare the individual values with the acceptance limits and inform the analyst if the results meet specifications. If the results are not within the acceptance criteria, corrective action suitable to the situation will be taken. This may include, but is not limited to, checking calculations and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with documentation of any QC problems in the case narrative.

Element D3 Revision No. 1 Date: 07/01/04 Page 3 of 4

Commercial quality control materials are run at least quarterly to ensure accuracy of the analytical procedure. Repetitive analysis of a reference material will also yield precision data. Accuracy information determined from reference materials is valuable because variables specific to sample matrix are eliminated. The QC program is capable of charting data for surrogates, spikes, control materials, and reference materials. The Quality Assurance Department reviews these charts in association with the monthly trend report for any indication of possible problems (i.e., shift in the mean and standard deviation).

Completeness – Completeness is the percentage of valid data acquired from a measurement system compared to the amount of valid measurements that were planned to be collected. The objective is analysis of all samples submitted intact, and to ensure that sufficient sample weight/volume is available should the initial analysis not meet acceptance criteria. The laboratory's LIMS will assign a unique identification number to the sample which tracks and controls movement of samples from the time of receipt until disposal. All data generated will be recorded referencing the corresponding sample identification number. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. This information will include, but is not limited to, summaries of QC data and sample results, chromatograms, spectra, and instrument tune and calibration data. Additional information will be stored in the laboratory's archives, both hard copy and electronic.

 $Completeness = \frac{Number of valid measurements}{Total measurements needed} \times 100$ 

Element D3 Revision No. 1 Date: 07/01/04 Page 4 of 4

Method Detection Limit – It is important to ascertain the limit of quantitation that can be achieved by a given method, particularly when the method is commonly used to determine trace levels of analyte. The Environmental Protection Agency has set forth one method for determining method detection limits (MDLs) from which limits of quantitation (LOQs) can be extrapolated. MDLs are evaluated on an annual basis. MDL is defined as follows for all measurements:

$$MDL = t (n - 1, 1 - a = 0.99) \times S$$

Where:

MDL = Method detection limit

s = Standard deviation of the replicate analyses

 $t_{(n-1,1-a=0.99)}$  = Students' t-value for a one-sided 99% confidence level and a

standard deviation estimate with n-1 degrees of freedom

#### **Definitions:**

<u>Calculated Method Detection Limit</u> – The calculated method detection limit is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. It is determined from analysis, on a given instrument, of a sample in a given matrix containing the analyte.

Reported Method Detection Limit (MDL) – The reported MDL is defined as the highest of all calculated MDLs obtained from all instruments used for a particular method/matrix. This can be the actual value or a default value set above the calculated values.

<u>Limit of Quantitation (LOQ)</u> – The limit of quantitation is defined as the level above which quantitative results may be obtained with a specified degree of confidence. The Lancaster Laboratories' policy is to set quantitation limits at a value at least 3× the MDL. Regulatory limits may require setting a lower LOQ. The judgement of the technical department management may be used to assess the feasibility of a lower LOQ.

### **APPENDIX A**

### **EXAMPLE REPORTING FORMS**



: :4

#### ANALYTICAL RESULTS

Prepared for:

Example Client 2425 New Holland Pike Lancaster, PA 17601

717-656-2300

Prepared by:

Laneaster Laboratories 2425 New Holland Pike Laneaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 884400. Samples arrived at the laboratory on Wednesday, February 11, 2004. The PO# for this group is 2110918.010102.

|                                                                    | Lancaster Labs Number |
|--------------------------------------------------------------------|-----------------------|
| Client Description                                                 | 4214395               |
| MW-6 Grab Water Sample                                             | 4214396               |
| MW-7 Grab Water Sample                                             | 4214397               |
| MW-22 Grab Water Sample                                            | 4214398               |
| TB-021104 Trip Blank Water Sample                                  | 4214399               |
| GW-77-12-18 Grab Water Sample                                      | 4214400               |
| GW-772-12-18 Grab Water Sample                                     | 4214401               |
| GP-773-06-08 Grab Soil Sample                                      | 4214402               |
| GP-772-00-02 Grab Soil Sample                                      | 4214403               |
| GP-772-10-12 Grab Soil Sample                                      | 4214404               |
| GP-772-10-12-DUP Grab Soil Sample                                  | 4214405               |
| GP-771-00-02 Grab Soil Sample<br>TB-021104 Trip Blank Water Sample | 4214406               |

#### METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

1 COPY TO Example Client
1 COPY TO Data Package Group

Attn: Ms. Joanne Smith

**3998** 



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-655-2300 Fax: 717-656-2681

2216 Rev. 3/10/03

### Analysis Report



Questions? Contact your Client Services Representative Jeffrey S Moyer at (717) 656-2300.

Respectfully Submitted,

Melissa a Moder moth

9889



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 747-656-2300 Fax: 717-656-2681

### Analysis Report



Page 1 of 6

Lancaster Laboratories Sample No. WW 4214395

MW-6 Grab Water Sample

Collected: 02/11/2004 10:00

by SB

Account Number: 10000

As Received

Submitted: 02/11/2004 18:35 Reported: 02/18/2004 at 09:11 Discard: 03/04/2004

Example Client 2425 Hew Holland Pike Lancaster, PA 17601

EAMW6 SDG#: EWA79-01

|                |                          |            |             | As Received        |       |             |
|----------------|--------------------------|------------|-------------|--------------------|-------|-------------|
|                |                          |            | As Received | Hathod             |       | Dilution    |
| CAT<br>No.     | Analysis Namo            | CAS humber | Result      | Detection<br>Limit | Units | Pactor      |
| 00259          | Mercury                  | 7439-97-6  | N.D.        | 0.00016            | mg/l  | 1           |
|                | Aluminum                 | 7429-90-5  | 0.430       | 0.0433             | mg/l  | 1           |
| 01743          | Calcium                  | 7440-70-2  | 14.5        | 0.0494             | mg/l  | 3           |
| 01750          | Iron                     | 7439-89-6  | 0.652       | 0.0453             | mg/l  | 1           |
| 01754          | Magnesium                | 7439-95-4  | 8.38        | 0.0183             | mg/l  | 1           |
| 01757          | Porassium                | 7440-09-7  | 1.48        | 0.0429             | mg/l  | 3           |
| 01752          | Sodium                   | 7440-23-5  | 9.46        | 0.463              | mg/l  | 1           |
| 01767          | Thallium                 | 7440-28-0  | N.D.        | 0.0089             | mg/l  | 1           |
| 07022          | Arsenic                  | 7440-38-2  | N.D.        | 0.0049             | mg/l  | 1           |
| 07035<br>07036 | Selenium                 | 7782-49-2  | N.D.        | 0.0047             | mg/l  | 1           |
|                | <del></del>              | 7440-36-0  | N.D.        | 0.0085             | mg/l  | 1           |
| 07044          | Antimony<br>Berium       | 7440-39-3  | 0.0432      | 0.00048            | mg/l  | 1           |
| 07046          |                          | 7440-41-7  | N.D.        | 0.00034            | mg/l  | 1           |
| 07047          | Beryllium<br>Cadmium     | 7440-43-9  | n.d.        | 0.00087            | mg/l  | 1           |
| 07049          | Chromium                 | 7440-47-3  | N.D.        | 0.0022             | mg/l  | 1           |
| 07051          |                          | 7440-48-4  | N.D.        | 0.0016             | mg/1  | 1           |
| 07052          | Cobalt                   | 7440-50-B  | 0.0044 J    | 0.0021             | mg/l  | 1           |
| 07053          | Copper                   | 7439-92-1  | N.D.        | 0.0093             | mg/l  | 1           |
| 07055          | Lead                     | 7439-96-5  | 0.192       | 0.00051            | mg/l  | .1          |
| 0705B          | Kanganese                | 7440-02-0  | 0.0080 J    | 0.0038             | mg/l  | 1           |
| 07061          | Nickel                   | 7440-22-4  | N.D.        | 0.0018             | mg/1  | 1           |
| 07066          | Silver                   | 7440-62-2  | N.D.        | 0.0017             | mg/l  | 1           |
| 07071          | Vanadium                 | 7440-66-6  | 0.0313      | 0.0041             | mg/l  | 1           |
| 07072          | Zinc                     | 74,0 00 -  | •           |                    |       |             |
| 00937          | TCL Pesticides in Waters | •          |             |                    |       |             |
| 00938          | Endrin Ketone            | 53494-70-5 | n.D.        | 0.004D             | ug/1  | 1           |
| 01361          | Alpha Chlordane          | 5103-71-9  | N.D.        | 0.0020             | ug/l  | 1           |
| 01362          | Gamma Chlordane          | 5103-74-2  | N.D.        | 0.0020             | ug/1  | 1           |
| 01600          | Alpha BHC                | 319-84-6   | n.D.        | 0.0020             | ug/l  | 1           |
| 01601          | Bera BHC                 | 319-85-7   | R.D.        | 0.012              | ug/l  | i           |
| 01502          | Gamma BHC - Lindane      | 58-89-9    | N.D.        | 0.0030             | ug/l  | 1           |
| 01603          | Delta BHC                | 319-86-8   | N.D.        | 0.0030             | ug/1  | 7           |
| 01604          | Heptachlor               | 76-44-8    | N.D.        | 0.0020             | ug/1  | 1           |
| 01605          | Aldrin                   | 309-00-2   | N.D.        | 0.0020             | ug/1  | 1           |
| 01606          | Reptachlor Epoxide       | 1024-57-3  | 0.0025 J    | 0.0020             | nd/J  |             |
| 01607          | p.p-DDE                  | 72-55-9    | n.d.        | 0.0040             | ug/l  | 1           |
| 01608          | p.p-DDD                  | 72-54-8    | N.D.        | 0.0040             | ug/l  | _           |
| 01609          | p.p-020<br>TQQ-q.p       | 50-29-3    | N.D.        | 0.0040             | ug/l  | <b>3316</b> |
| 01610          | Dieldrin                 | 60-57-1    | N.D.        | 0.0050             | ug/1  | 1           |
| ATSTA          | av-d-a                   |            |             |                    |       |             |



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681



Page 2 of 6

Lancaster Laboratories Sample No. WW 4214395

MW-6 Grab Water Sample

Collected:02/11/2004 10:00

by SB

Account Number: 10000

Submitted: 02/11/2004 18:35 Reported: 02/18/2004 at 09:11 Discard: 03/04/2004

Example Client 2425 Hew Holland Pike Lancaster, PA 17601

| EAMW6 | SDG#: EWA79-01                                               |                |                  | As Received      |               |               |
|-------|--------------------------------------------------------------|----------------|------------------|------------------|---------------|---------------|
|       |                                                              |                | an Received      | Hethod           |               | Dilution      |
| CAT   |                                                              | CAS Sumber     | Rogult           | Detection        | Units         | Factor        |
| No.   | Analysis Hans                                                |                | _                | Limit            | ug/l          | 1             |
| 01611 | Endria                                                       | 72-20-8        | N.D.             | 0.0040           | na/J          | ī             |
| 01613 | Toxaphene                                                    | 8001-35-2      | N.D.             | 0.30             | 72\7          | ī.            |
| 01615 | Endosulfan II                                                | 33213-65-9     | N.D.             | 0.0050<br>0.0040 | 78\7<br>72\ _ | 1             |
| 01616 | Endosulfan I                                                 | 959-98-8       | N.D.             | 0.0090           | 78/J          | 1             |
| 01617 | Endosulfan Sulfate                                           | 1031-07-8      | n.d.             | 0.020            | ug/l          | 1             |
| 01618 | Endrin Aldehyde                                              | 7421-93-4      | N.D.             | 0.20             | vg/1          | 1             |
| 01619 | PCB-1016                                                     | 12674-11-2     | N.D.             | 0.20             | úg/l          | ī.            |
| 01620 | PCB-1221                                                     | 11104-28-2     | N.D.             | <b>*</b>         | ug/l          | 1             |
| 01621 | PCB-1232                                                     | 11141-16-5     | N.D.             | 0.10             | 2g/1          | 1             |
| 01622 | PCB-1242                                                     | 53469-21-9     | N.D.             | 0.20             | ug/1          | ī             |
| 01623 | PCB-1248                                                     | 12672-29-6     | N.D.             | 0.30             | ug/1<br>ug/1  | ī             |
| 01623 | PCB-1254                                                     | 11097-69-1     | N.D.             | 0.20             | ug/1          | ī             |
| 01625 | PCB-1260                                                     | 11096-82-5     | Ŋ.D.             | 0.30             | ug/1          | î             |
| 01860 |                                                              | 72-43-5        | N.D.             | 0.060            | na, r         | •             |
| ATSON |                                                              | or available t | o perform a MS/M | SD for this      |               |               |
|       | Sufficient sample volume was a malysis. Therefore, a LCS/LCS | D was performe | d to demonstrate | precision and    |               |               |
|       | accuracy at a batch level.                                   |                |                  |                  |               |               |
|       | Stenisch or a paren                                          |                |                  |                  |               |               |
| 04578 | TCL SWB46 Semivolatiles/Water:                               | 5              | *                |                  |               |               |
| U45/6 | JCD SWOOD SETTING                                            |                |                  |                  | ug/1          | 1             |
| 03871 | 4-Chloroaniline                                              | 106-47-8       | N.D.             | 1,               | 44/J          | 1             |
| 03905 | 2-Methylnaphthalene                                          | 91-57-6        | N.D.             | 1.               | ug/1          | ī             |
| 03907 | 2-Nitroaniline                                               | 88-74-4        | N.D.             | 1.               | ug/l          | ī             |
| 03907 | 2,4,5-Trichlorophenol                                        | 95-95-4        | N.D.             | 1.               | ug/l          | ī             |
| 03924 | 2-Chlorophenol                                               | 95-57-8        | N.D.             | 1.               | ug/1          | i             |
| 03924 | Phenol                                                       | 108-95-2       | N.D.             | 1.               | ug/1<br>ug/1  | 1             |
| 03925 | 2-Nitrophenol                                                | 88-75-5        | N.D.             | 1.               | ug/l<br>ug/l  | î             |
| 03920 | 2,4-Dimethylphenol                                           | 105-67-9       | N.D.             | 1.               | ug/1<br>ug/1  | i             |
| 03928 | 2,4-Dichlorophenol                                           | 120-83-2       | N.D.             | 1.               | ug/l          | 1             |
| 03929 | 4-Chloro-3-methylphenol                                      | 59-50-7        | N.D.             | 1.               | ug/1          | 1             |
| 03929 | 2,4,6-Trichlorophenol                                        | 88-05-2        | n.d.             | 1.               | ug/1          | 1             |
| 03936 | bis (2-Chloroethyl) ether                                    | 111-44-4       | n.d.             | 1.               | ug/1<br>ug/1  | ì             |
|       | 1,3-Dichlorobenzene                                          | 541-73-1       | N.D.             | 1.               | ÿg/l<br>∪g/⊥  | ī             |
| 03937 | 1,4-Dichlorobenzene                                          | 106-46-7       | N.D.             | 1.               | ug/1<br>ug/1  | 1             |
| 03938 | 1,2-Dichlorobenzene                                          | 95-50-1        | N.D.             | 1.               | •             | î             |
| 03939 |                                                              | 67-72-1        | n.d.             | 1.               | ug/1          | 1             |
| 03941 | an fine federal                                              | 621-64-7       | N.D.             | 1.               | ug/l          | 1             |
| 03942 |                                                              | 98-95-3        | n.d.             | 1.               | ug/l          |               |
| 03943 |                                                              | 78-59-1        | Ŋ,D.             | 1.               | ug/l          | 8 <u>5</u> 11 |
| 03944 |                                                              | 111-91-1       | N.D.             | 1.               | ug/1          | 1             |
| 03945 | bis (Z-Chloroethoxy) methana                                 | 120-82-1       | N.D.             | 1.               | ug/l          | 1             |
| 03946 | 1.2.4-Trichlorobenzene                                       | 2-1            |                  |                  |               |               |



Lancaster Laboratories, Inc.
2425 Naw Holland Pike
PD Box 12425
Lancaster, PA 17503-2425
717-656-2300 Fax: 717-656-2681

### Analysis Report



Page 3 of 6

Lancaster Laboratories Sample No. WW 4214395

MW-6 Grab Water Sample

Collected:02/11/2004 10:00

by SB

Account Number: 10000

Submitted: 02/11/2004 18:35 Reported: 02/18/2004 at 09:11 Discard: 03/04/2004

Example Client 2425 Hew Holland Pike Lancaster, PA 17601

| EAMW6      | SDG#: EWA79-01                                                                                                         |                                  |                                      | As Received             |              |          |
|------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|-------------------------|--------------|----------|
|            |                                                                                                                        |                                  | An Received                          | Method                  |              | Dilution |
| CAT<br>No. | Analysis Name                                                                                                          | CAS Number                       | Repult                               | Detection<br>Limit      | Units        | Pactor   |
|            | _                                                                                                                      | 91-20-3                          | N.D.                                 | 1.                      | ug/1         | 1        |
| 03947      | Naphchalene                                                                                                            | 87-68-3                          | N.D.                                 | 1.                      | ug/l         | 3.       |
| 03948      | Hexachlorobutadiana                                                                                                    | 77-47-4                          | N.D.                                 | 5.                      | 11g/l        | 1        |
| 03949      | Hexachlorocyclopencadiene                                                                                              | 91-58-7                          | n.D.                                 | 1.                      | ug/l         | 1        |
| 03950      | 2-Chloronaphthaleme                                                                                                    | 208-96-8                         | N.D.                                 | 1.                      | ug/1         | .1       |
| 03951      | Acenaphthylene                                                                                                         | 131-11-3                         | N.D.                                 | 2.                      | ug/1         | 1        |
| 03952      | Dimethylphthalate                                                                                                      | 95-48-7                          | N.D.                                 | 1.                      | ug/l         | 1        |
| 04680      | 2-Hethylphenol                                                                                                         | 108-60-1                         | n.d.                                 | 1.                      | · ug/l       | 1        |
| 04681      | 2,2'-mcybis(1-Chloropropane)                                                                                           | 105-44-5                         | N.D.                                 | 2.                      | ug/l         | 1        |
| 04682      | 4-Methylphenol and 4-methylphe                                                                                         |                                  | T Tahris harfana                     | he                      |              |          |
|            | 3-Methylphenol and 4-methylphe<br>chromatographic conditions use<br>for 4-methylphenol represents                      | d for sample a<br>the combined t | nalysis. The res<br>otal of both com | ult reported<br>pounds. |              |          |
| 04679      | TCL SW846 Semivolatiles/Waters                                                                                         |                                  |                                      |                         |              | _        |
|            |                                                                                                                        | 132-64-9                         | N.D.                                 | 1.                      | ng/l         | 1        |
| 03879      | Dibenzofuran                                                                                                           | 99-09-2                          | N.D.                                 | 1.                      | ug/l         | 1        |
| 03908      | 3-Nitroaniline                                                                                                         | 100-01-6                         | N.D.                                 | 1.                      | ug/l         | 1        |
| 03909      | 4-Nitroaniline                                                                                                         | 51-28-5                          | N.D.                                 | 20.                     | ug/l         | 1        |
| 03931      | 2,4-Dinitrophenol                                                                                                      | 100-02-7                         | N.D.                                 | 10.                     | ug/1         | 1        |
| 03932      | 4-Nitrophenol                                                                                                          | 534-52-1                         | N.D.                                 | 5.                      | ug/l         | 1        |
| 03933      | 4.6-pinitro-2-methylphenol                                                                                             | 87-86-5                          | N.D.                                 | 3.                      | ug/1         | 1        |
| 03934      | Penrachlorophenol                                                                                                      | 606-20-2                         | N.D.                                 | 1.                      | ug/l         | 1        |
| 03953      | 2.6-pinitrocoluene                                                                                                     | 83-32-9                          | N.D.                                 | 1.                      | ug/l         | 1        |
| 03954      | Acenaphthene                                                                                                           | 121-14-2                         | N.D.                                 | 1.                      | ug/1         | 1        |
| 03955      | 2,4-minitrocoluene                                                                                                     | 86-73-7                          | N.D.                                 | 1.                      | ug/l         | 1        |
| 03956      | Fluorens                                                                                                               | 7005-72-3                        | n.D.                                 | 1.                      | ug/1         | 1        |
| 03957      | 4-Chlorophenyl-phenylether                                                                                             | B4-66-2                          | N.D.                                 | 2.                      | ug/l         | 1        |
| 03958      | Diethylphthalate                                                                                                       | 86-30-6                          | N.D.                                 | 2.                      | nā\J         | 1        |
| 03960      | N-Nitrosodiphenylamine<br>N-nitrosodiphenylamine decompt<br>The result reported for N-nitr<br>total of both compounds. | oses in the GC<br>cosodiphenylum |                                      |                         | s.m.13       | 1        |
| 03961      | 4-Bromophenyl-phenylether                                                                                              | 101-55-3                         | N.D.                                 | 1.                      | υg/l<br>νσ/l | î        |
| 03962      | Hexachlorobenzene                                                                                                      | 118-74-1                         | n.d.                                 | 1.                      | ug/1         | ī        |
| 03963      | Phenanthrene                                                                                                           | 85-01-8                          | N.D.                                 | 1.                      | ug/1         | ī        |
| 03964      | Anthracene                                                                                                             | 120-12-7                         | N.D.                                 | 1.                      |              | ī        |
| 03965      |                                                                                                                        | 84-74-2                          | N.D.                                 | 2.                      | ug/l<br>ug/l | ī        |
| 03966      |                                                                                                                        | 206-44-0                         | N.D.                                 | 1.                      | _            | î        |
| 03967      |                                                                                                                        | 129-00-0                         | Ñ.Ď.                                 | 1.                      | ug/l         | 1        |
| 03969      |                                                                                                                        | 85-68-7                          | N.D.                                 | 2.                      | ug/1         | 8912     |
| 03970      |                                                                                                                        | 56-55-3                          | N.D.                                 | 1.                      | ug/1         | 1        |
| 03970      |                                                                                                                        | 218-01-9                         | N.D.                                 | 1.                      | ug/l         | •        |
| ひろごノム      | MW10che                                                                                                                |                                  |                                      |                         |              |          |



Lancaster Laboratories, Inc.
2425 New Holland Pike
PO Box 12425
Lancaster, PA 17605-2425
717-656-2300 Fax: 717-656-2681



Page 4 of 6

Lancaster Laboratories Sample No. WW 4214395

MW-6 Grab Water Sample

Collected: 02/11/2004 10:00

by SB

Account Number: 10000

Submitted: 02/11/2004 18:35 Reported: 02/18/2004 at 09:11 Discard: 03/04/2004

Example Client 2425 Hew Holland Pike Lancaster, PA 17601

| EAMW6      | SDG#: EWA79-01                            |                     |                 | As Received        |             |              |
|------------|-------------------------------------------|---------------------|-----------------|--------------------|-------------|--------------|
| in more    | <del>-</del> -                            |                     | As Received     | Mathod             |             | pilution     |
| CAT<br>No. | Annlysis Name                             | CAS Bumber          | Result          | Detection<br>Limit | Voite       | Pactor<br>1  |
| MO.        | <del>-</del>                              | 91-94-1             | N.D.            | 1.                 | ug/l        | 1            |
| 03972      | 3,3 - Dichlorobenzidine                   | 117-81-7            | N.D.            | 2.                 | ug/l        | i            |
| 03973      | bis(2-Ethylhexyl)phthalate                | 117-84-0            | N.D.            | 2.                 | ug/l        | 1            |
| 03974      | Di-n-octylphthalate                       | 205-99-2            | N.D.            | 1.                 | ug/1        | 1            |
| 03975      | Benzo (b) fluoranthene                    | 207-08-9            | N.D.            | 1.                 | ug/1        | 1            |
| 03976      | Benzo(k) Fluoranthene                     | 50-32-8             | N.D.            | 1.                 | ug/1        | 1            |
| 03977      | Banzo (a) pyrene                          | 193-39-5            | N.D.            | 1.                 | ug/l        | . 1          |
| 0397B      | Indeno(1,2,3-ed)pyrene                    | 53-70-3             | N.D.            | 1.                 | ug/l        |              |
| 03979      | Dibenz (a, h) onthracene                  | 191-24-2            | N.D.            | 1.                 | ug/l        | 1            |
| 03980      | Benzo(g,h,i)perylene                      | 0                   | M D             | 1.                 | ug/l        | 1            |
| 04684      | Carbazole                                 |                     | perform a MS/   | HSD for this       |             |              |
|            | Carbazole<br>Sufficient sample volume was | dot everience -     | d to demonstrat | e precision and    |             |              |
|            | analysis, Therefore, a LCS/UC             | 2D Maz berrotar     |                 | -                  |             |              |
|            | accuracy at a batch level.                |                     |                 |                    |             |              |
| 06291      | TCL by 8260 (water)                       |                     |                 |                    |             |              |
|            |                                           | 74-87-3             | N.D.            | 1.                 | ug/l        | 1            |
| 05385      | Chloromethane                             | 75-01-4             | N.D.            | 1.                 | ug/l        | 1            |
| 05386      | Vinyl Chloride                            | 74-83-9             | N.D.            | 1.                 | ug/l        | 1.           |
| 05387      | Bromomethane                              | 75-00-3             | N.D.            | 1,                 | na/J        | 1            |
| 05388      | Chloroethane                              | 75-35-4             | N.D.            | 0.8                | ug/l        | 1            |
| 05390      | 1,1-Dichloroethene                        | 75-09-2             | N.D.            | 2.                 | ug/1        | 1            |
| 05391      | Kethylene Chloride                        | 156-60-5            | N.D.            | 0.8                | ug/l        | 1            |
| 05392      | trans-1, 2-Dichloroethene                 | 75-34 <b>-3</b>     | N.D.            | 1.                 | ug/l        | 1            |
| 05393      | 1,1-Dichloroethane                        | /5-34-3<br>156-59-2 | N.D.            | 0.8                | ug/l        | 1            |
| 05395      | cis-1,2-Dichloroethene                    | 67-66-3             | N.D.            | 0.8                | ug/l        | 1            |
| 05396      | Chloroform                                | 71-55-6             | N.D.            | 0.8                | υg/1        | 1            |
| 05398      | 1,1,1-Trichloroethane                     | 71-55-6<br>56-23-5  | N.D.            | 1.                 | ug/1        | 1            |
| 05399      | Carbon Tetrachloride                      | 71-43-2             | N.D.            | 0.5                | ug/l        | 1            |
| 05401      | Benzene                                   | 71-43-X<br>307-06-2 | N.D.            | 1.                 | ug/1        | 1            |
| 05402      | 1,2-Dichlorosthans                        | 79-01-5             | 1. J            | 1.                 | ug/l        | 1            |
| 05403      | Trichlorosthens                           | 79-01-5<br>78-87-5  | N.D.            | 1.                 | ug/1        | 1            |
| 05404      | 1.2-Dichloropropane                       | 75-27-4             | N.D.            | 1.                 | ug/l        | 1            |
| 05406      | Bromodichloromethane                      | 108-88-3            | N.D.            | 0.7                | ug/l        | 1            |
| 05407      | Toluene                                   | 79-00-5             | N.D.            | 0.8                | ug/1        | 1            |
| 05408      | 1,1,2-Trichloroethane                     | 127-18-4            | 1. J            | 0.8                | ug/1        | 1            |
| 05409      | Tetrachloroethene                         | 124-48-1            | N.D.            | 1.                 | ug/l        | 1            |
| 05411      |                                           | 124-46-1            | N.D.            | 0.8                | ug/1        | 1            |
| 05413      | Chlorobenzene                             | 108-90-7            | N.D.            | 0.B                | ug/l        | <b>8</b> 313 |
| 05419      |                                           |                     | N.D.            | 1.                 | ug/l        | _            |
| 05418      |                                           | 100-42-5            | N.D.            | 1.                 | <u>úg/1</u> | 1            |
| 0541       | * · · · · · · <del>-</del>                | 75-25-2             | a.u.            | <del></del>        |             |              |
| 0341       |                                           |                     |                 |                    |             |              |



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2423 717-656-2300 Fax: 717-656-2681

### Analysis Report



Page 5 of 6

Lancaster Laboratories Sample No. WW 4214395

MW-6 Grab Water Sample

Collected: 02/11/2004 10:00

by SB

Account Number: 10000

Example Client

Submitted: 02/11/2004 18:35 Reported: 02/18/2004 at 09:11 Discard: 03/04/2004

2425 Hew Holland Pike Lancaster, PA 17601

As Received

EANW6 SDG#: EWA79-01

| EAMW6          | SDG#: EWA79-01                          |                       |                       | As Received<br>Method |              | Dilution |
|----------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|--------------|----------|
| CAT            |                                         | CYZ Marper            | An Received<br>Rosult | Detection             | Unite        | Pactor   |
| No.            | Analysis Nome                           | 79-34-5               | N.D.                  | Limit<br>1.           | ug/l         | 1        |
| 05421          | 1,1,2.2-Tetrachloroethane               | 67-64-1               | N.D.                  | 6.                    | ug/l         | 1        |
| 06302          | Acetone                                 | 75-15-0               | N.D.                  | 1.                    | ug/l         | 1        |
| 06303          | Carbon Disulfide                        | 78-93-3               | <b>н.</b> Б.          | 3.                    | ύg/l<br>ug/l | i        |
| 06305          | 2-Butanone<br>trans-1,3-Dichloropropene | 10061-02-6            | N.D.                  | 1.                    | ug/1         | ī        |
| 06306<br>06307 | cis-1,3-Dichloropropene                 | 10061-01-5            | N.D.                  | 1.<br>3.              | ug/1         | 1        |
| 06308          | 4-Methyl-2-pentanone                    | 108-10-1              | N.D.<br>N.D.          | 3.                    | ug/l         | i        |
| 06309          | 2-Hexanona                              | 591-78-6<br>1330-20-7 | N.D.                  | 0.8                   | ug/1         | 1        |
| 06370          | xylene (Total)                          | s not submitted       | for the project       | . A LCS/LCSD          |              |          |

was performed to demonstrate precision and accuracy at a batch level. A site-specific MSD sample v

Commonwealth of Pennsylvania Lab Certification No. 36-037

| CAT<br>No.<br>00259<br>01743<br>01750<br>01757<br>01767<br>01767<br>07022<br>07035<br>07036<br>07044 | Analysis Name Mercury Aluminum Calcium Iron Hagnesium Sodium Thallium Arsenic Selenium Antimny Barium | Laboratory  Methed SW-846 7470A SW-846 6010B | Trials Date and Time 1 02/13/2004 08:48 1 02/16/2004 00:35 | Analyst Pactor  Damary Valentin 1  Donna R Sackett 1 |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07047<br>07049                                                                                       | Beryllium<br>Codmium                                                                                  | SW-846 6010B<br>SW-846 6010B                                                                                                                                                                                                       | 1 02/16/2004 00:35<br>1 02/16/2004 00:35                   | Donna R Sackett 1 Donna R Sackett 1                                                                                                                                                                                                                                                                                                                                                     |
| 07051                                                                                                | Chromium                                                                                              | 5W-846 6010B                                                                                                                                                                                                                       | 1 02/16/2004 00:35                                         | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                         |
| 07052                                                                                                | Cobalt                                                                                                | SW-846 6010B                                                                                                                                                                                                                       | 1 02/15/2004 00:35                                         | Donna R Sackett 1 Donna R Sackett 1                                                                                                                                                                                                                                                                                                                                                     |
| 07053                                                                                                | Cobbez                                                                                                | SW-846 6010B .                                                                                                                                                                                                                     | 1 02/16/2004 00:35                                         | Donna R Sackett 1                                                                                                                                                                                                                                                                                                                                                                       |
| 07055                                                                                                | Lead                                                                                                  | SW-846 6010B                                                                                                                                                                                                                       | 1 02/16/2004 00:35                                         | Donna R Sackett 1                                                                                                                                                                                                                                                                                                                                                                       |
| 07058                                                                                                | Manganese                                                                                             | SW-846 6010B                                                                                                                                                                                                                       | 1 02/16/2004 00:35                                         | Donna R Sackett 1                                                                                                                                                                                                                                                                                                                                                                       |
| 07061                                                                                                | Nickel                                                                                                | SW-846 6010B                                                                                                                                                                                                                       | 1 02/16/2004 00:35                                         | Donna R Sack可能性 1                                                                                                                                                                                                                                                                                                                                                                       |
| 07066                                                                                                | Silver                                                                                                | SH-846 6010B                                                                                                                                                                                                                       | 1 02/16/2004 00:35                                         | Donna R Sackett 1                                                                                                                                                                                                                                                                                                                                                                       |
| 07071                                                                                                | Vanadium                                                                                              | SW-846 6010B                                                                                                                                                                                                                       | 1 02/16/2004 90:35                                         | Andrea J Covey 1                                                                                                                                                                                                                                                                                                                                                                        |
| 07072<br>00937                                                                                       | Zinc<br>TCL Pesticides in Waters                                                                      | SH-846 B081A/8082                                                                                                                                                                                                                  | 1 02/13/2004 11:14                                         |                                                                                                                                                                                                                                                                                                                                                                                         |



### Analysis Report



Page 6 of 6

Lancaster Laboratories Sample No. WW 4214395

MW-6 Grab Water Sample

Account Number: 10000 by SB Collected: 02/11/2004 10:00 Example Client 2425 Hew Holland Pike Lancaster, PA 17601 Submitted: 02/11/2004 18:35 Reported: 02/18/2004 at 09:11 Discard: 03/04/2004

| EAMW6          | SDG#: EWA79-01                                   | SN-846 8270C                 | 1 | 02/14/2004 10:43                     | Susan L Scheuering               | .1        |
|----------------|--------------------------------------------------|------------------------------|---|--------------------------------------|----------------------------------|-----------|
| 04678          | TCL SW846<br>Semivolatiles/Waters                | . 5W-846 8278C               | 1 | 02/14/2004 10:43                     | Susan L Scheuering               | 1         |
| 04679          | TCL SW846<br>Semivolatiles/Waters                | SW-846 8260B                 | 1 | 02/12/2004 21:44                     | Scott H Evans<br>Denise L Trimby | 1         |
| 06291<br>00813 | TCL by 8260 (water)<br>BNA Water Extraction      | SW-846 3510C<br>SW-846 3510C | 1 | 02/12/2004 08:20<br>02/13/2004 00:30 | Karen L Beyer                    | 1         |
| 00817          | Water Sample Pest.<br>Extraction                 | SW-846 50303                 | 1 | 02/12/2004 21:44                     | Scott M Evans<br>James L Hertz   | n.a.<br>1 |
| 01163<br>01848 | GC/HS VOA Water Prop<br>WW 5W846 ICP Digest (tot | SW-846 3005A                 | 1 | 02/12/2004 20:00                     | Nelli S Markaryan                | 1         |
| 05713          | MA 2M846 He Didest                               | SW-846 7470A                 | 1 | 02/12/2004 17:00                     | METAT D                          |           |

99 15.



### APPENDIX A

# GC/MS VOLATILES DATA DELIVERABLES FORMS

#### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab | Name: | Lancaster | Laboratories | Concract: |  |
|-----|-------|-----------|--------------|-----------|--|
|     |       |           |              |           |  |

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

BFB Injection Date: 03/18/04 Lab File ID: nm18t01.d

BFB Injection Time: 12:44 Instrument ID: HP07159

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

| <u> </u>                 |                                                                                        | RELATIVE ABUNDANCE           |
|--------------------------|----------------------------------------------------------------------------------------|------------------------------|
| m/e                      | ION ABUNDANCE CRITERIA                                                                 | ABUNDANCA                    |
| 50                       | 15.0 - 40.0% of mass 95                                                                | 20.7<br>54.3                 |
| 95                       | 30.0 - 60.0% of mass 95<br>Base peak, 100% relative abundance<br>5.0 - 9.0% of mass 95 | 100.0<br>6.8                 |
| 96  <br>  173  <br>  174 | Less than 2.0% of mass 174<br>Greater than 50.0% of mass 95                            | 0.4 ( 0.5)1<br>93.5          |
| 175                      | 5.0 - 9.0% of mass 174<br>Greater than 95.0%, but less than 101.0% of mass 174         | 7.4 ( 7.9)1<br>91.4 ( 97.8)1 |
| 177                      | 5.0 - 9.0% of mass 176                                                                 | 6.3 ( 6.9)2                  |
| 1                        | 1-Value is % mass 174 2-Value is % mas                                                 | s 175                        |

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

| •  |            | LAB       | LAB            | DATE       | TIME     |
|----|------------|-----------|----------------|------------|----------|
| ļ  | EPA        | SAMPLE ID | FILE ID        | ANALYZED   | ANALYZED |
| !  | SAMPLE NO. |           |                |            |          |
| _  | *******    | VSTD100   | nm18c01.d      | 03/18/04   | 13:08    |
| 01 | VSTD100    | VBLKN64   | nm18b01.d      | 03/18/04   | 13:58    |
| 02 | VBLKN64    | LCSN64    | nm1Bs01.d      | 03/18/04   | 14:23    |
| 03 | LCSN64     | 4235599   | nm18s02.d      | 03/18/04   | 14:48    |
| 04 | EXBLKB     | 4234111   | nm18s03.d      | 03/18/04   | 15:13    |
| 05 | TSTPZ      | 4234111   | nm18s04.d      | 03/18/04   | 15:38    |
| 06 | TSTPZMS    | 1         | nm18s05.d      | 03/18/04   | 16:03    |
| 07 |            | 4234111   | nm18s06.d      | 03/18/04   | 16:28    |
| 08 |            | 4235000   | nm18s07.d      | 03/18/04   | 16:53    |
| 09 | •          | 4232992   | nm18s08.d      | 03/18/04   | 17:19    |
| 10 | ZSOIL      | 4231735   | nm18s09.d      | 03/18/04   | 17:44    |
| 11 |            | 4231738   | nm1Bs10.d      | 03/18/04   | 18:09    |
| 12 |            | 4231738   | nml8sll.d      | 03/18/04   | 18:34    |
| 13 | :          | 4231979   | nm18s12.d      | 03/18/04   | 18:59    |
| 14 |            | 4231983   | nm18s14.d      | 03/18/04   | 19:50    |
| 15 | •          | 4231344   | nm18s15.d      | 03/18/04   | 20:15    |
| 16 | *          | 4230646   | l mm18s16.d    | 03/18/04   | 20:40    |
| 17 | •          | 4230646   | nm18s17.d      | 03/18/04   | 21:05    |
| 18 | EXBLKE     | 4234768   | nm18s18.d      | 03/18/04   | 21:30    |
| 19 | ZH458      | 4232621   | <b>1</b> ••••• | 03/18/04   | 21:55    |
| 20 | 26464      | 4234382   | nm18s19.d      | 03/18/04   | 22:20    |
| 21 | 26466      | 4234389   |                | 03/18/04   | 22:45    |
| 22 | Z6465      | 4234393   | nm18s21.d      | 1 03/10/04 | 1        |

#### 2A WATER VOLATILE SURROGATE RECOVERY

| Lab | Name: Lancaster | Laboratories | Contract: |         |
|-----|-----------------|--------------|-----------|---------|
| Lab | Code:           | Case No.:    | SAS No.:S | DG No.: |

|            |                         | QC LIMITS |
|------------|-------------------------|-----------|
| 18891 10   | = Dibromofluoromethane  | (81-120)  |
| SI (npt)   | = DIDIOMOITAGE AA       | (82-112)  |
| S2 (DCA)   | = 1,2-Dichloroethane-d4 |           |
| - ( - div) | m-1n-dB                 | (85-112)  |
| S3 (TOL)   | = Toluene-d8            | (83-113)  |
| S4 (BFB)   | = 4-Bromofluorobenzene  | (03-113)  |

page 1 of 1

<sup>#</sup> Column to be used to flag recovery values
\* Values outside of contract required QC limits
D Surrogate diluted out

### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | Sample  | NO. |
|-----|---------|-----|
| 1   |         |     |
| į,  | /BLKN64 | ļ   |

| Lab | Name: | Lancaster | Laboratories | Contract: |          |
|-----|-------|-----------|--------------|-----------|----------|
| Lab | Code: | LANCAS    | Case No.:    | SAS No.:  | SDG No.: |

Matrix: (soil/water) WATER Lab Sample ID: VBLKN64

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/04marl8a.b/nml8b01.d

Level: (low/med) LOW Date Received:

Moisture: not dec. \_\_\_\_ Date Analyzed: 03/18/04

Column: (pack/cap) CAP Dilution Factor: 1.0

## CONCENTRATION UNITS: CAS NO. COMPOUND {ug/L or ug/Kg) MDL ug/L

| 75-71-8                                                                                                                                                                                                                                                                                                   | CAS NO.   | COMPOUND (ug/L or ug/kg/   | 1222 -5/- |          |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-----------|----------|---|
| 74-87-3Chloromethane       1       U         75-01-4                                                                                                                                                                                                                                                      |           | 2/ 61 veromethane          | 2         | <b>ט</b> |   |
| 1                                                                                                                                                                                                                                                                                                         | 75-71-8   | Dichloronirinoromechanic   | 1         | Ü        |   |
| 74-83-9                                                                                                                                                                                                                                                                                                   | 74-87-3   | Chlorometnane              | 1         | <b>ט</b> |   |
| 75-00-3                                                                                                                                                                                                                                                                                                   | 75-01-4   | Vinyl Chibride             | 1         | ט        | İ |
| 75-69-4                                                                                                                                                                                                                                                                                                   | 74-83-9   | Bromomethane               | 1         | <b>ט</b> | 1 |
| 64-17-5                                                                                                                                                                                                                                                                                                   | 75-00-3   | Chloroetname               | 2         | U        | 1 |
| 107-02-8Acrolein 75-35-41,1-Dichloroethene 76-13-1Freon 113 6                                                                                                                                                                                                                                             | 75-69-4   | Trichlorolluolomechans     | 50        | ט        | l |
| 75-35-4                                                                                                                                                                                                                                                                                                   | 64-17-5   | Ethanol                    | 40        | ט        | ł |
| 76-13-1                                                                                                                                                                                                                                                                                                   | 107-02-8  | Acrolein                   | 0.8       | ָ ט      | 1 |
| 76-13-1                                                                                                                                                                                                                                                                                                   | 75-35-4   | 1,1-Dichlorostnene         | 2         | ט ן      | ١ |
| 74-88-4                                                                                                                                                                                                                                                                                                   | 76-13-1   | Freon 113                  | 6         | ן ס      | ١ |
| 67-63-02-Propanol 75-15-0Carbon Disulfide 107-05-1Allyl Chloride 75-09-2Methylene Chloride 75-65-0t-Butyl Alcohol 107-13-1Acrylonitrile 156-60-5trans-1,2-Dichloroethene 1634-04-4Methyl Tertiary Butyl Ether 110-54-3                                                                                    | 67-64-1   | Acetone                    | 1         | ט        | 1 |
| 75-15-0                                                                                                                                                                                                                                                                                                   | 74-88-4   | Methyl lodice              | 50        | ט        | ١ |
| 107-05-1                                                                                                                                                                                                                                                                                                  | 67-63-0   | 2-Propanol                 | 1         | ן ט      | - |
| 75-09-2Methylene Chioride  75-65-0t-Butyl Alcohol  10                                                                                                                                                                                                                                                     | 75-15-0   | Carbon Distilline          | 1         | שׁ       | l |
| 75-65-0t-Butyl Alcohol   107-13-1Acrylonitrile                                                                                                                                                                                                                                                            | 107-05-1  | Allyl Chioride             | 2         | טן       | 1 |
| 107-13-1                                                                                                                                                                                                                                                                                                  | 75-09-2   | Methylene Chiolice         | 10        | ן ט      | ١ |
| 156-60-5trans-1,2-Dichloroethene   0.5   U   1634-04-4Methyl Tertiary Butyl Ether   2   U   110-54-3n-Hexane   0.8   U   75-34-31,1-Dichloroethene   (total)   1   U   108-20-3di-Isopropyl Ether   0.8   U   126-99-82-Chloro-1,3-Butadiene   0.8   U   156-59-2Ethyl t-Butyl Ether   0.8   U   156-59-2 | 75-65-0   | t-Butyl Alcohor            | 4         | ט (      | 1 |
| 1634-04-4Methyl Tertiary Sutyl Edity   2                                                                                                                                                                                                                                                                  | 107-13-1  | Acrylonitrile              | 0.8       | ט (      | ł |
| 110-54-3n-Hexane                                                                                                                                                                                                                                                                                          | 156-60-5  | trans-1,2-Dichiolocchem    | 0.5       | U        | ١ |
| 540-59-01,2-Dichloroethene (total)                                                                                                                                                                                                                                                                        | 1634-04-4 | Methyl Terclary Bucht      | 2         | ן ט      | ı |
| 75-34-31,1-Dichloroethane                                                                                                                                                                                                                                                                                 | 110-54-3  | n-Hexane                   | 0.В       | טן       | - |
| 108-20-3di-Isopropyl Ether                                                                                                                                                                                                                                                                                | 540-59-0  | 1,2-Dichloroethene (tobal) | 1         | ט ן      | ļ |
| 126-99-82-Chloro-1,3-Butantene                                                                                                                                                                                                                                                                            | 75-34-3   | 1,1-Dicatorbechanc         | 0.8       | טן       | ļ |
| 637-92-3Ethyl t-Butyl Ether                                                                                                                                                                                                                                                                               | 108-20-3  | d1-lsopropyr bradiene      | 1         | ט        | Ì |
| 156-59-2cis-1,2-Dichloropethene                                                                                                                                                                                                                                                                           | 126-99-8  | CNICIO-I,3-Bacaman         | 0.8       | ן ט      | ļ |
| 78-93-32.2-Dichloropropane 1 U                                                                                                                                                                                                                                                                            | 637-92-3  | Ethyl C-bucyl Bener        | 0.8       | טן       | , |
| ESA-30-72.2-Dichloropropane                                                                                                                                                                                                                                                                               | 156-59-2  | Cls-1,2-Dichiolo           | j 3       | 1 -      |   |
| 594-20-72,2-Dichiological 30   U   107-12-0Propionitrile                                                                                                                                                                                                                                                  | 78-93-3   | X-Birginone                | 1         | , -      |   |
| 107-12-0Propioni                                                                                                                                                                                                                                                                                          | 594-20-7  |                            | 30        | ע        |   |
|                                                                                                                                                                                                                                                                                                           | 107-12-0  | PLODIONTETTE               |           | l        |   |

## VOLATILE ORGANICS ANALYSIS DATA SHEET

|   | EPA | SWALTE | МО | • |
|---|-----|--------|----|---|
|   |     |        |    |   |
| ı |     |        |    | 1 |

|     |       |           |              |             | VBLKN54 |
|-----|-------|-----------|--------------|-------------|---------|
| Lab | Name: | Lancaster | Laboratories | Contract:   |         |
|     |       |           |              | SAS No.: Si | OG No.: |

Lab Code: LANCAS Case No.: SAS No.: SDG NO.:

Matrix: (soil/water) WATER Lab Sample ID: VBLKN64

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/04mar18a.b/nm18b01.d

Level: (low/med) LOW Date Received:

Moisture: not dec. \_\_\_\_ Date Analyzed: 03/18/04

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO. COMPOUND CAS NO. COMPOUND (ug/L or ug/Kg) MDL ug/L

| CAS NO.   | COMBORNID (173) II OT 73) V |       |                |
|-----------|-----------------------------|-------|----------------|
|           | Methacrylonitrile           | 10    | U              |
| 125-98-7  | Bromochloromethane          | 1     | U              |
| 74-97-5   | Bromochtoromen              | i 4 i | ט              |
| 109-99-9  | Tetrahydrofuran             | 0.8   | ซ              |
| 67-66-3   | Chloroform                  | 0.B   | U              |
| 71-55-6   | 1,1,1-Trichloroethane       | i 2 i | υ              |
| 110-82-7  | Cyclohexane                 | i 1 i | ט              |
| 563-58-6- | 1,1-Dichloropropene         | 1 1   | ซ              |
| 56-23-5   | Carbon Tetrachloride        | 100   | บั             |
| 78-83-1   | Isobutyl Alcohol            | 0.5   | ซ              |
| 71-43-2   | Benzene                     | 1     | U              |
| 107-06-2- | 1,2-Dichloroethane          | 0.8   | ט              |
| 994-05-8- | t-Amyl Methyl Ether         | 2     | U              |
| 142-82-5- | n-Heptane                   | 100   | ט              |
| 71-36-3   | n-Butanol                   | 1     | שׁ             |
| 79-01-6   | Trichloroethene             | 1     | u              |
| 78-87-5   | 1,2-Dichloropropane         | 1     | บ              |
| 80-62-6   | Methyl Methacrylate         | 1     | טו             |
| 74-95-3   | Dibromomethane              | 70    | , <del>ט</del> |
| 123-91-1- | 1,4-Dioxane                 | ,,,   | เซ             |
| 75-27-4   | Bromodichloromethane        | 2     | ָ<br>ע ו       |
| 79-46-9   | 2-Nitropropane              | 2     | עו             |
|           | 2-Chloroethyl Vinyi Echer   | 1     | ט              |
| 10061-01- | Scis-1,3-Dichloropropene    | 3     | บ              |
| 108-10-1- | 4-Methyl-2-Pentanone        | 0.7   | טו             |
|           | Toluene                     | 1     | บ              |
| 10061-02- | .6trans-1,3-Dichloropropene | i     | ט ו            |
| 07 63 - 2 | Ethvl Methacrylate          | 0.8   | ו ט            |
| 1 79-00-5 | 1,1,2-Trichloroethane       | 0.8   | עו             |
| 127-38-4  | Tetrachloroetnene           | 1 1   | טו             |
| 142-28-9  | 1,3-Dichloropropane         | 1     |                |
|           |                             | _     | _              |

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| VBLKN64 |  |
|---------|--|
|         |  |

Lab Name: Lancaster Laboratories

Contract:\_\_\_\_

Lab Code: LANCAS

Case No.:\_\_\_\_

COMPOUND

SAS No.:\_\_\_\_

SDG No.:\_\_\_\_

Matrix: (soil/water) WATER

Lab Sample ID: VBLKN64

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP07159.i/04mar18a.b/nm18b01.d

Level: (low/med) LOW

Date Received:

Moisture: not dec.

Date Analyzed: 03/18/04

Column: (pack/cap) CAP

CAS NO.

Dilution Factor: 1.0

## CONCENTRATION UNITS: (ug/L or ug/Kg) MDL ug/L

IJ 3 591-78-6----2-Hexanone U 1 124-48-1-----Dibromochloromethane U 1 | 106-93-4----1,2-Dibromoethane U 0.8 1330-20-7-----Xylene (Total) U 0.8 108-90-7-----Chlorobenzene U 630-20-6-----1,1,1,2-Tetrachloroethane 1 0.8 U 100-41-4-----Ethylbenzene 0.8 U 1330-20-7----m+p-Xylene U 0.8 95-47-6------ Xylene 1 U 100-42-5-----Styrene U 1 75-25-2----Bromoform U 98-82-8-----Isopropylbenzene 55 U 108-94-1----Cyclohexanone ן ט 1 79-34-5-----1,1,2,2-Tetrachloroethane 110-57-6----trans-1,4-Dichloro-2-Butene lu 15 ו ט 1 108-86-1-----Bromobenzene U 1 96-18-4-----1,2,3-Trichloropropane U 1 103-65-1----n-Propylbenzene 1 U 95-49-8-----2-Chlorotoluene טן 108-67-8-----1,3,5-Trimethylbenzene 1 1 106-43-4-----4-Chlorotoluene 1 ט ו 98-06-6----tert-Butylbenzene ט ן 76-01-7-----Pentachloroethane ן ט 95-63-6----1,2,4-Trimethylbenzene ן ט 135-98-8----sec-Butylbenzene jΰ 1 99-87-6----p-Isopropyltoluene U 1 541-73-1----1,3-Dichlorobenzene ן ע 1 106-46-7-----1,4-Dichlorobenzene ן ט 1 104-51-8----n-Butylbenzene U 95-50-1----1,2-Dichlorobanzene

## VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE  | NO.       |
|-----|---------|-----------|
| '   | /BLKN64 | <br> <br> |

| Lab Name: Lancaster Laboratories | Contract:                                   |
|----------------------------------|---------------------------------------------|
| Lab Code: LANCAS Case No.:       | SAS No.:SDG No.:                            |
| Matrix: (soil/water) WATER       | Lab Sample ID: VBLKN64                      |
| Sample wt/vol: 5.00 (g/mL) mL    | Lab File ID: HP07159.i/04mar18a.b/nml8b01.d |
| Level: (low/med) LOW             | Date Received:                              |
| Moisture: not dec                | Date Analyzed: 03/18/04                     |
| Column: (pack/cap) CAP           | Dilution Factor: 1.0                        |
|                                  |                                             |

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) MDL ug/L

| CAS NO.                                                                       |                  |                        |
|-------------------------------------------------------------------------------|------------------|------------------------|
| 96-12-81,2-Dibromo-3-Chloropropane   120-82-11,2,4-Trichlorobenzene   87-68-3 | 2<br>1<br>2<br>1 | U<br>  U<br>  J<br>  U |

#### 4A VOLATILE METHOD BLANK SUMMARY

| Lab Name: Lancaster Laboratories | Contract:              |
|----------------------------------|------------------------|
| Lab Code: LANCAS Case No.:       | SAS No.: SDG No.:      |
| Lab File ID: nml8b01.d           | Lab Sample ID: VBLKN64 |
| Date Analyzed: 03/18/04          | Time Analyzed: 13:58   |
| Matrix (soil/water) WATER        | Level: (low/med) LOW   |

Instrument ID: HP07159

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

|     |              | LAB       | LAB       | TIME     |
|-----|--------------|-----------|-----------|----------|
| I   | EPA          |           | FILE ID   | ANALYZED |
| 1   | SAMPLE NO.   | SAMPLE ID |           |          |
| 1   | 222020000000 |           | nm18s01.d | 14:23    |
| 01  | LCSN64       | LCSN64    | nm18s02.d | 14:48    |
| 02  | EXBLKB       | 4235599   | mm18s03.d | 15:13    |
| 03  | TSTPZ        | 4234111   | mm18s04.d | 15:38    |
| 04  | TSTPZMS      | 4234111   | nm18s05.d | 16:03    |
| 05  | TSTPZMSD     | 4234111   | nm18s06.d | 16:28    |
| 06  | ZB315        | 4235000   |           | 16:53    |
| 07  | EXBLKC       | 4232992   | nm18s07.d | 17:19    |
| 08  | ZSOIL        | 4231735   | nm18s08.d | 17:44    |
| 09  | ZHCAR        | 423173B   | m18s09.d  | 18:09    |
| 10  | ZHCARMS      | 4231738   | nm18s10.d | 18:34    |
| 11  | ZH597        | 4231979   | nm18s11.d | 18:59    |
| 12  | ZH598        | 4231983   | nm18s12.d | 19:50    |
| 13  | EXBLKD       | 4231344   | nm18s14.d | 20:15    |
| 14  | WCCRZ        | 4230646   | nm18s15.d | 20:40    |
| 15  | WCCRZMS      | 4230646   | nml8s16.d | 20:40    |
| 16  | EXBLKE       | 4234768   | nm18s17.d | 21:30    |
| 17  | ZH458        | 4232621   | nml8s18.d | 21:55    |
| 18  |              | 4234382   | nml8s19.d | •        |
| 19  | !            | 4234389   | nml8s20.d | 22:20    |
| 20  |              | 4234393   | nm18s21.d | 22:45    |
| 21  | 7 1 1        | 4232627   | nm18s22.d | 23:10    |
| 22  |              | 4232627   | nm18s23.d | 23:35    |
| ~ * |              |           |           | _        |

| COMMENTS: | • |
|-----------|---|
|           |   |
|           |   |

# Lancaster Laboratories, Inc. GC/MS Volatiles Matrix Spike/Spike Duplicate Recoveries

Unspiked: nm18s03.d TSTPZ 4234111 Method: SW-846 82608 Instrument: HP07159

Matrix Spike: nm18s04.d TSTPZMS 4234111 Matrix/Level: VL Dilution Factor: 20.00

Spike Duplicate: nm18s05.d TSTPZMSD 4234111 Batch: NO40781AB

| COMPOUND NAME                                                                                                                                                                          | MS<br>SPIKE                                                                                       | MSD<br>SPIKE                                                                                     | US CONC<br>UG/L                              | MS CONC<br>UG/L                                                                    | MSD CONC<br>UB/L                               | MS REC                                                                         | HSD REC                                                                 | Range<br>LOVER-UPPER                                                                                                                     | INSPEC                                  | RPD<br>%                    | RPD<br>MAX                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|----------------------------------------------------------------------|
| Vinyl Chloride 1,1-Dichloroethene Freom 113 Carbon Disulfide Nethylene Chloride 2-Butanone Chloroform Carbon Tetrachloride !sobutyl Alcohol Benzene 1,2-Dichloroethane Trichloroethene | 400.0<br>400.0<br>400.0<br>400.0<br>3000.0<br>3000.0<br>400.0<br>400.0<br>400.0<br>400.0<br>400.0 | 409.0<br>409.0<br>400.0<br>400.0<br>400.0<br>3009.0<br>400.0<br>400.0<br>400.0<br>400.0<br>400.0 | HD<br>HD<br>HD<br>HD<br>HD<br>HD<br>HD<br>HD | 437<br>406<br>434<br>423<br>417<br>1830<br>419<br>429<br>6710<br>420<br>426<br>416 | 422<br>434<br>6520<br>413<br>413<br>418<br>399 | 109<br>101<br>108<br>106<br>104<br>61<br>105<br>107<br>67<br>105<br>105<br>105 | 109<br>102<br>111<br>107<br>102<br>61<br>106<br>108<br>65<br>103<br>103 | 70-151<br>78-146<br>73-166<br>77-155<br>79-133<br>42-140<br>82-131<br>73-144<br>51-140<br>83-128<br>73-136<br>75-135<br>83-127<br>75-143 | YES YES YES YES YES YES YES YES YES YES | 0 0 2 2 2 0 1 1 3 2 2 0 0 2 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 |
| Toluene Tetrachloroathene Chlorobenzene Ethylbenzene m+p-Xylene o-Xylene Cyclohexanone 1,4-Dichlorobenzene 1,2-Dichlorobenzene                                                         | 400.0<br>400.0<br>400.0<br>800.0<br>400.0<br>10000.0<br>400.0                                     | 400.0<br>400.0<br>400.0<br>800.0<br>400.0<br>10000.0<br>400.0                                    | ND ND 85.4<br>ND 85.4<br>ND ND ND ND ND ND   |                                                                                    | 410<br>495<br>1120<br>419<br>5780<br>417       | 108<br>102<br>102<br>102<br>103<br>58<br>105                                   | 110<br>102<br>102<br>104<br>105<br>58<br>104<br>104                     | 75-143<br>83-120<br>82-129<br>82-130<br>82-130<br>21-139<br>81-122<br>82-117                                                             | YES YES YES YES YES YES YES YES YES     | 20021011                    | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                         |

|                |   |      | calculat<br>Ent. by | te | 2202 |
|----------------|---|------|---------------------|----|------|
| Lab Chronicle: | - | <br> | Ver. by             |    |      |
|                |   |      |                     |    |      |

## Lancaster Laboratories, Inc. BC/MS Volatiles Laboratory Control Sample Recovery

File: rm18s01.d Inst: HP07159 Dilution Factor: 1.0

Injected: 03/18/04 at 14:23 Sample: LCSN64

Method: SW-846 8260B Matrix/Level: WL Batch: NO40781AA

| COMPOUND                    | SPIKE           | LCS CONC | LCS_REC | Range<br>LOWER-UPPER | INSPEC        |
|-----------------------------|-----------------|----------|---------|----------------------|---------------|
| NAME                        | LEVEL           | UG/L     | ×       | LUMEK-UPPEK          |               |
|                             | 00.00           | 25.41    | 127     | 56-172               | YES           |
| ichlorodifluoromethane      | 20.00           | 21.20    | 106     | 69-136               | YES           |
| hloromethane                | 20.00           | 20.19    | 101     | 71-129               | YES           |
| inyl Chloride               | 20.00           | 21.46    | 107     | 46-138               | YES           |
| romomethane                 | 20.00           | 20.74    | 104     | 59-133               | YES           |
| hloroethane                 | 20.00           | 20.84    | 104     | 59-137               | YES<br>YES    |
| richtorofluoromethane       | 20.00           | 352.14   | 70      | 46-145               | YES           |
| thanol                      | 500.00          | 108.86   | 73      | 28-146               | YES           |
| crolein                     | 150.00<br>20.00 | 20.97    | 105     | 79-130               | YES           |
| ,1-Dichloroethene           |                 | 22.22    | 111     | 73-140               | YES           |
| reon 113                    | 20.00           | 113.59   | 76      | 22-179               | YES           |
| cetone                      | 150.00          | 21.80    | 109     | 74-133               |               |
| lethyl Iodide               | 20.00           | 96.27    | 64      | 54-162               | YES           |
| 2-Propanol                  | 150.00          | 21.97    | 110     | 73-143               | YES           |
| Carbon Disulfide            | 20.00           | 16.81    | 84      | 40-136               | YES           |
| allyl Chioride              | 20.00           | 20.99    | 105     | 80-128               | YES           |
| tethylene Chloride          | 20.00           | 139.47   | 70      | 57-141               | YES           |
| t-Butyl Alcohol             | 200.00          | 73.15    | 73      | 64-126               | YES           |
| Acrylonitrile               | 100.00          | 21.34    | 107     | 81-124               | YES           |
| rrans-1.2-Dichloroethene    | 20.00           | 20.81    | 104     | 77-127               | YES           |
| Rethyl Tertiary Butyl Ether | 20.00           | 22.50    | 112     | 67-141               | YES           |
| n-Rexame                    | 20.00           |          | 106     | 84-117               | YES           |
| 1,2-Dichloroethene (total)  | 40.DD           | 42.57    | 103     | 83-127               | YES           |
| 1,1-Dichloroethane          | 20.00           | 20.57    | 104     | 67-130               | YE            |
| di-Isopropyl Ether          | 20.00           | 20.78    | 115     | 71-142               | YE            |
| 2-Chloro-1,3-Butadiene      | 20.00           | 22.97    | 107     | 74-120               | YE            |
| Ethvi t-Butyl Ether         | 20.00           | 21.43    | 106     | 84-117               | YE            |
| cis-1,2-Dichloroethene      | 20.00           | 21.23    | 82      | 45-154               | YE            |
| 2-Butanone                  | 150.0D          | 122.27   | 110     | 79-123               | ÝE            |
| 2,2-Dichloropropane         | 20.00           | 22.01    | 75      | 73-128               | YE            |
| Propionitrile               | 150.00          | 112.86   | 84      | 79-124               | YE            |
| Methacrylonitrile           | 150.00          | 125.46   | 92      | 63-125               | YE            |
| Bromoch Loromethane         | 20.00           | 18.36    | 82      | 73-131               | YE            |
| Tetrahydrofuran             | 100.00          | 81.63    | 107     | 86-124               | YE.           |
| Chloroform                  | 20.00           | 21.46    | 109     | 83-127               | YE            |
| 1,1,1-Trichlorosthane       | 20.00           | 21.80    | 109     | 76-128               | YE            |
| Cyclohexane                 | 20.00           | 21.78    | 105     | 84-116               | YE            |
| 1,1-Dichloropropene         | 20.00           | 21.04    | 111     | 77-130               | YE            |
| Carbon Tetrachloride        | 20.00           | 22.27    | 68      | 59-134               | YE.           |
| Isobutyl Alcohol            | 500.00          | 341.46   | 106     | 85-117               | YE            |
| Benzene                     | 20.00           | 21.22    | 106     | 77-132               | YE            |
| 1,2-Dichloroethane          | 20.00           | 21.19    | 104     | 79-113               | YI            |
| t-Amyl Methyl Ether         | 20.00           | 20.86    | 109     | 64-136               | Y             |
| n-Heptane                   | 20.00           | 21.70    | 61      | 50-133               | Yí            |
| n-Butánol                   | 1000.00         | 609.58   | 106     | 87-117               | Y             |
| Trichloroethene             | 20.00           | 21.20    | 105     | 80-117               | . Y           |
| 1.2-Dichloropropane         | 20.00           | 21.02    | 89      | 73-113               | Y             |
| Methyl Methacrylate         | 20.00           | 17.74    | 103     | 87-117               | Y             |
| Dibromomethane              | 20.00           | 20.65    | 61      | 41-155               | Ÿ             |
| 1.4-Dioxane                 | 500.00          | 305.22   | 106     | 83-121               | Y             |
| Bromodichloromethane        | 20.00           | 21.11    | 79      | 37-150               | Y             |
| 2-Nitropropane              | 20.00           | 15.80    | 96      | 60-129               | Y             |
| 2-Chloroethyl Vinyl Ether   | 20.00           | 19.12    | 105     | 78-114               | Y             |
| cis-1,3-Dichloropropene     | 20.00           | 20.90    | 79      | 65-125               | Y             |
| 4-Hethyl-2-Pentanone        | 100.00          | 78.84    | 100     | 85-115               | Y             |
| Toluene                     | 20.00           | 20.05    | 98      | 79-114               | Y             |
| trans-1,3-Dichloropropene   | 20.00           | 19.66    | 90      | 77-118               | Y             |
|                             | 20.00           | 17.92    | * *     | 04 447               | Y             |
| 1,1,2-Trichloroethane       | 20.00           | 19.28    | 70      | 8/C = Could<br>1     | 1222222222222 |

| 1,1,2-Trichloroethane | 20.00 | 19.28<br>======== | , , , , , , , , , , , , , , , , , , , | H/C = Could not | calculate | ***** |
|-----------------------|-------|-------------------|---------------------------------------|-----------------|-----------|-------|
| Lab Chronicle:        |       |                   |                                       |                 |           |       |
|                       |       |                   |                                       |                 |           |       |

## Lancaster Laboratories, Inc. GC/MS Volatiles Laboratory Control Sample Recovery

File: nm18s01.d Inst: HP07159 Dilution Factor: 1.0 Injected: 03/18/04 at 14:23 Sample: LCSH64 Method: SW-846 8260B Matrix/Level: WL Batch: NO40781AA

| COMPOUND HAME                | SPIKE<br>LEVEL | LCS CONC<br>UG/L | LCS REC   | Range<br>LOWER-UPPER | IXSPE |
|------------------------------|----------------|------------------|-----------|----------------------|-------|
| MARE                         |                |                  |           | 82-126               | YES   |
| etrachloroethene             | 20.00          | 22.14            | 111<br>96 | 84-119               | YES   |
| .3-Dichloropropane           | 20.00          | 19.18            | 78        | 47-150               | YES   |
| - Hexanone                   | 100.00         | 78.39            |           | 78-119               | YES   |
| ibromochloromethane          | 20.00          | 19.59            | 98        | 81-114               | YES   |
| 'S-DipLowoethaus             | 20.00          | 18.92            | 95        |                      | YES   |
| hlorobenzene                 | 20.00          | 20.29            | 101       | 85-115               | YES   |
| ,1,1,2-Tetrachtoroethane     | 20,00          | 20.65            | 103       | 83-114               | YES   |
| 1115-18thacitot perione      | 20.00          | 20.80            | 104       | 82-119               | YES   |
| thylbenzene                  | 40.00          | 41.65            | 104       | 84-120               | YE!   |
| +p-Xylene                    | 60.00          | 62.40            | 104       | 84-12D               |       |
| ylene (Total)                | 20.00          | 20.75            | 104       | 84-120               | YE    |
| -Xylene                      |                | 20.02            | 100       | 84-117               | YE    |
| tyrene                       | 20.00          | 18.30            | 91        | 69-11B               | YE    |
| romoform                     | 20.00          | 21.24            | 106       | 80-120               | ÝΕ    |
| sopropylbenzene              | 20.00          | 279.18           | 56        | 19-158               | YE    |
| yc l ohexanone               | 500.00         |                  | 87        | 72-119               | YE.   |
| 1.2.2-Tetrachloroethane      | 20.00          | 17.37            | 7B        | 50-140               | YE    |
| rans-1,4-Dichloro-2-Butene   | 100.00         | 77.80            | 102       | 80-118               | YE    |
| romobenzene                  | 20.00          | 20.36            | 83        | 78-117               | YE    |
| ,2,3-Trichloropropane        | 20.00          | 16.58            | 105       | 78-119               | YE    |
| -Propylbenzene               | 20.00          | 21.01            |           | 78-115               | Ŷĺ    |
| -chlorotoluene               | 20.00          | 20.70            | 103       | 78-116               | ŶĬ    |
| ,3,5-Trimethylbenzene        | 20.00          | 20.92            | 105       |                      | Y     |
| -Chloratoluene               | 20.00          | 21.05            | 105       | 80-112               | ŸĬ    |
| ert-Butylbenzene             | 20.00          | 20.70            | 104       | 74-114               | Ÿi    |
|                              | 20,00          | 18.01            | 90        | 63-116               | Y     |
| entachloroethane             | 20.00          | 20.81            | 104       | 78-117               | Y.    |
| ,2,4-Trimethylbenzene        | 20.00          | 20.69            | 103       | 72-120               | Ÿ     |
| ec-Butylbenzene              | 20.00          | 20.25            | 101       | 72-118               |       |
| - Isopropyl toluene          | 20.00          | 20.94            | 105       | 87-114               | Y     |
| ,3-Dichlorobenzene           |                | 21.16            | 106       | 84-116               | Y     |
| ,4-Dichlorobenzene           | 20.00          | 20.24            | 101       | 70-116               | Y     |
| n-Butylbenzene               | 20.0D          | 21.02            | 105       | 81-112               | Y     |
| ,2-Dichlorobenzene           | 20.00          |                  | 71        | 59-120               | Y     |
| 1 2-0 (bromo-3-Chlocopropane | 20.00          | 14.2B            | 89        | 65-114               | Ÿ     |
| 1.2.4-Trichlorobenzene       | 20.00          | 17.78            | 93        | 56-120               | Ŷ     |
| Hexach Lorobutadiene         | 20.00          | 18.68            | 74        | 61-116               | Y     |
| Naphthalene                  | 20.00          | 14.75            | 82        | 67-114               | Y     |
| 1,2,3-Trichlorobenzene       | 20.00          | 16.31            | Q£        | 01-114               |       |

|                |    | not calcu<br>Ent. | late |  |
|----------------|----|-------------------|------|--|
| Lab Chronicle: | ,, | <br>Ver.          |      |  |
|                |    |                   |      |  |

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): nml8c01.d

Date Analyzed: 03/18/04

Instrument ID: HP07159

Time Analyzed: 13:08

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

| ï  |             | IS1 (FBZ) |               | IS2 (CBZ) | 1      | IS3 (DCB)       | !        |
|----|-------------|-----------|---------------|-----------|--------|-----------------|----------|
| !  | i           | AREA #    | RT #          | AREA #    | RT #   | AREA #          | RT#      |
| 1  |             |           | 25555=2       | ========  | ====== |                 | 1        |
| ļ  | 12 HOUR STD | 995762    | 7.970         | 787324    | 11.352 | 435296          | 13.203   |
|    | UPPER LIMIT |           | 8.470         | 1574648   | 11.852 | 870592          | 13.703   |
| ļ  | LOWER LIMIT |           | 7.470         | 393662    | 10.852 | 217648          | 12.703   |
| ļ  | POMEK DINIT |           |               | *****     | ====== | ========        | 200000   |
| į  | EPA SAMPLE  |           | ,             | 1         |        |                 |          |
|    | NO.         |           |               |           |        |                 |          |
|    | NO.         | <br>      | <br>  _====== |           |        | *******         | ======   |
|    |             | 986142    | 7.972         | 782186    | 11.351 | 401793          | 13.203   |
| 01 | •           | 983225    | 7.966         | 787206    | 11.351 | 424401          | 13.200   |
| 02 | :           | 980121    | 7.968         | 775135    | 11.350 | 397694          | 13.198   |
| 03 |             | 976215    | 7.973         | 780990    | 11.352 | 406930          | 13.200   |
| 04 | !           | 979762    | 7.969         | 781758    | 11.348 | 421999          | 13.203   |
| 05 |             | 993937    | 7.969         | 786831    | 11.351 | 430924          | 13.202   |
| 06 | !           | 975998    | 7.972         | 780510    | 11.354 | 398549          | 13.203   |
| 07 | •           | 951891    | 7.968         | 754992    | 11.353 | 384100          | 13.201   |
| 80 | •           | 972852    | 7.973         | 777846    | 11.352 | 399550          | 13.203   |
| 09 | · .         | 980510    | 7.969         | 774682    | 11.354 | 394436          | 13.202   |
| 10 | ·           | 963408    | 7.967         | 769082    | 11.352 | 423288          | ] 13.200 |
| 11 |             | 980793    | 7.969         | 775682    | 11.351 | 397459          | 13.200   |
| 12 | <u>*</u>    |           | 7.968         | 768858    | 11.354 | 390467          | 13.202   |
| 13 |             | 967916    | 7.967         | 763753    | 11.352 | 382188          | 13.200   |
| 14 | ·           | 955105    | 7.970         | 724462    | 11.352 |                 | 13.200   |
| 15 | •           | 904513    | 7.970         | 728259    | 11.352 | 395908          | 13.200   |
| 16 | •           | 904583    | 7.970         | 733464    | 11.352 | 366444          | 13.204   |
| 17 | •           | 923713    | 7.972         | 701059    | 11.351 |                 | 13.202   |
| 18 | •           | 870650    | 7.970         | 748464    | 11.352 | •               | 13.203   |
| 19 |             | 938394    | 7.967         | 735251    | 11.349 | 1 7 7 7 7 7 7 7 | 13.200   |
| 20 |             | 923272    | 7.966         | 717254    | 11.351 |                 | 13.200   |
| 21 |             | 898429    | 7.969         | 732794    | 11.354 | :               | 13.202   |
| 22 | 459ZH       | 920373    | 1 7.303       | 1         | 1      | i               | <u> </u> |
|    | l           | 1         | _             | _         | ., I   | 7 714770 - 1    | 1008     |

IS1 (FBZ)=Fluorobenzene

IS2 (CBZ)=Chlorobenzene-d5

IS3 (DCB)=1,4-Dichlorobenzene-d4

UPPER LIMIT = + 100% of internal standard area.

LOWER LIMIT = - 50% of internal standard area.

<sup>#</sup> Column used to flag values outside QC limits with an asterisk

<sup>\*</sup> Values outside of QC limits.

#### BA VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

| Lab N | Name: | Lancaster | Laboratories | Contract: |
|-------|-------|-----------|--------------|-----------|
|-------|-------|-----------|--------------|-----------|

Case No.:\_\_\_\_\_ SAS No.:\_\_\_\_ SDG No.:\_\_\_\_ Lab Code: LANCAS

Lab File ID (Standard): nml8c01.d

Date Analyzed: 03/18/04

Instrument ID: HP07159

Time Analyzed: 13:08

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

| 12 HOUR STD UPPER LIMIT LOWER LIMIT |        | RT #<br>======<br>7.970<br>8.470<br>7.470 |                               | RT #   11.352   11.852   10.852   10.852 |                       | RT # ====== 13.203 13.703 12.703 |
|-------------------------------------|--------|-------------------------------------------|-------------------------------|------------------------------------------|-----------------------|----------------------------------|
| NO.                                 | 866399 | <br> ======<br>  7.969<br>                | <br> ========<br>  703475<br> | 11.351                                   | <br> <br>  378534<br> | 13.199                           |

IS1 (FBZ)=Fluorobenzene

IS2 (CB2)=Chlorobenzene-d5 IS3 (DCB)=1,4-Dichlorobenzene-d4 UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

<sup>#</sup> Column used to flag values outside QC limits with an asterisk

#### 6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

| Lab | Hame: | Lancaster | Laboratories | CO.1.E. CO.1. |          |
|-----|-------|-----------|--------------|---------------|----------|
| Lab | Code: | LANCAS    | Case No.:    | SAS No.:      | 506 No.: |

Instrument ID: HP07159 Calibration Date(s): 03/10/04

03/10/04

Heated Purge: (Y/N) Y

Calibration Times: 10:54

14:52

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

| AB FILE ID: RRF 4 =                    | 101an       |           | RF 10=                   |              | :               | RF 20=               | nn10i14       | .d     |          |                |
|----------------------------------------|-------------|-----------|--------------------------|--------------|-----------------|----------------------|---------------|--------|----------|----------------|
| RF 50= nm10i13.d RRF100=               | - na10i17   | '.d       | RF300=                   | וויטומעו     |                 | .nr -                |               |        |          |                |
| <del></del>                            | T           |           |                          |              | 205100          | 005300               | 00C           | RRF    | %<br>RSD | CAL.<br>METHOD |
| COMPOUND                               | 1           | RRF 10    | RRF 20                   | RRF 50       | RRF 100         | KK1200               | rkf<br>granns | BEEFE  |          |                |
| ******************                     | A -12/7     | 0 3303    | LCBL U                   | 0.3544       | 0.3482          | 0.3513               |               | 0.3549 | 4        | AVG            |
| Dichlorodifluoromethane                | he were     | A 747/    | IN ZEZI                  | IN 3573      | 10.3250         | 10.31641             |               | 0.3378 | 6        | AVG #          |
| Chloromethane                          | <b>****</b> | 10 20EL   | וח אאנה                  | 10.3251      | เม.วามเ         | ו סכטכ. עו           |               | 0.3186 | 4        | AVG 4          |
| Vinyl Chloride<br>Bromomethane         | TA 2002     | 10 4064   | IN 7557                  | IN.2062      | IU.ZUUD         | IU. CUDY             |               | 0.2030 | 7        | AVG<br>AVG     |
| Chloroethane                           |             | A 4689    | IN SERN                  | ID. TR22     | 1U. 7/39        | 10.1//2              |               | 0.1770 | 5        | ÂVG            |
| Trichlorofluoromethane                 | - 1724      | 10 /044   | In LATE                  | IN 6385      | IO.427 <i>1</i> | 10.4203              |               | 0.4319 | 7        | AVG            |
| Ethanol                                | 1           | in noso   | in nnik                  | IN. BB19     | 10.0018         | 10.0022              | į             | 0.0855 | 10       | AVG            |
| Acrolein                               | 0.0754      | 0.0778    | 0.0841                   | 0.0968       | 0.0913          | 0.0011               |               | 0.2218 | 3        | AVG 1          |
| 1,1-Dichloroethene                     | *0.2226     | 0.2317    | 0.2197                   | 0.2256       | 0.2144          | 0.2107               | Ī             | 0.2094 | 12       | AVG            |
| Freon 113                              | 0.1571      | 0.2284    | 0.2201                   | 0.2216       | 0.2131          | D.2137               | ŀ             | 0.0565 | B        | AVG            |
| Acetone                                | 0.0523      | 0.0535    | 0.0558                   | 0.0647       | U.U2/8          | 0.0330               |               | 0.4066 | B        | AVG            |
| Hethyl Icdide                          | 0.3435      | 0.4287    | 0.4184                   | 0.424/       | 0.4163          | 0.4117               |               | 0.0331 | 5        | AVG            |
| 2-Propanol                             | 0.0311      | 0.0353    | 0.0327<br>0.7275         | 0.0341       | 0.0313          | n 7180               | į.            | 0.7134 | 6        | AVG            |
| Carbon Disulfide                       | 0.6362      | 0.755     | 0.4235                   | 0.7320       | 0.4333          | 0 4220               | i             | 0.4349 | 3        | AVG            |
| Allyl Chloride                         | 0.4370      | 0.460     | 0.4255                   | 0.4437       | 0.7201          | 0.7455               | l             | 0.2492 | 6        | AVG            |
| Methylene Chloride                     | 0.2228      | 0.268     | 0.0591                   | 0.2303       | 0.27            | 0.0500               |               | 0.0596 | 3        | AVG            |
| t-Butyl Alcohol                        | 0.0593      | 10.063    | 0.1533                   | 0.0371       | 160             | 0.1508               | 1             | 0.1531 | 8        | AVG            |
| Acrylonitrile                          | 0.1411      | 10.141    | 0.2533                   | 0.17.2       | 0.266           | 0.2442               | l             | 0.2493 | 5        | AVG            |
| trans-1,2-Dichloroethene               | 0.2316      | 0.200     | 10.2334                  | 0.237        | 0.840           | 0.8481               | Ĭ             | 0.8596 | 3        | ÂVG            |
| Methyl Tertiary Butyl Ethi             | er   0.8204 | 0.907     | 7 0.2443                 | 0.07521      | 0.241           | 0.2301               | 1             | 0.2309 | 13       | AVB            |
| n-Hexane<br>1,2-Dichloroethene (total) | 0.3707      | 0.275     | 10 2661                  | 0 2655       | 0.257           | 210.2551             | 1             | 0.2598 | 4        | AVG            |
| 1,2-Dichloroethene (total)             | 0.241       | 0.273     | 0.4625                   | 0 444        | 0.448           | 0.4462               |               | 0.4545 | 5        | AVG            |
| 1,1-Dichloroethane                     | 行り、サイフリ     | 016       | 0 0 8785                 | n RRA        | 0.863           | 210.8642             | :1            | 0.8618 | 6        | AVG            |
| di-Isopropyl Ether                     |             | 10 705    | DIR KAS                  | 7111 SIN     | 1 U_30Y         | / IU.3/04            | • 1           | 0.3666 |          |                |
| 2-Chloro-1,3-Butadiene                 | 1           | 1 A AA/   | nin 9/71                 | 11N ASS.     | 7111-856        | 210.6557             | ' ŧ           | 0.8369 |          |                |
| Ethyl t-Butyl Ether                    | A 224       | アトハ つ女写   | NIN 2741                 | 710.276      | 51U.ZOO         | U                    | 1             | 0.2704 |          |                |
| cis-1,2-Dichloroethene                 | 1 0 0       | ala att   | 710 DET                  | 310 DYS      | 110.000         | ו כפע געוו מ         | 11            | 0.0633 |          |                |
| Z-Butanone                             | IA 7771     | 312 Aic   | วเก 417                  | 710_419/     | 51U.4VI         | いいかいつからら             | 11            | 0.4040 |          |                |
| 2,2-Dichloropropane                    | la art      | 210 DES   | ወነብ ሰፋቤ/                 | 4 LM . 060a  | שכט געופ        | 310.020:             | ) }           | 0.0596 |          |                |
| Propionitrile                          | A 470       | 4 IN 440  | ALD 150                  | 5 ID. 159    | 010.155         | りしい コンプ              | 1 [           | 0.1580 |          |                |
| Methacrylonitrile                      | وه د ه ه ا  | - 10 424  | 210 1E7                  | 61B 151      | / 18. 143       | / IU. 1439           | * *           | 0.1510 |          |                |
| Bromochioromethane                     |             | ela ale   | O (A DED                 | 41D D56      | בכע.עו ב        | / [U_U40:            | 71            | 0.0516 |          |                |
| Tetrahydrofuran                        | i- 1-7      | 7 IA 177  | 71N 457                  | 1117 ASK     | U 1 U . 444     | 418-430              | 31            | 0.4457 |          |                |
| Chloroform 1,1,1-Trichloroethane       | 10 7/5      | ala /23   | 210 K12                  | 5 I N. 6 I B | SID.AUA         | Z1U.377              | / I           | 0.4055 |          |                |
| Cyclohexane                            | 1           | 91A 777   | 710 TAE                  | XIN 4/1      | NIU.331         | 2 I D. 242           |               | 0.3402 |          |                |
| 1,1-Dichloropropens                    | A 762       | cin ter   | 11 10 747                | 710.36Z      | 710.550         | 5 I U. 33V           | 71            | 0.3576 |          | AVG            |
| Carbon Tetrachloride                   | - 744       | ain 474   | さい てんつ                   | DID.376      | 010.359         | 710.300              | 9 8           | 0.0188 |          | AVG            |
| Isobutyl Alcohol                       | 0.017       | 9 0.020   | 0.018                    | 8 0.019      | טוט.טון         | 210.010              |               | 1.0000 |          | AVG            |
| Benzene                                | 0.921       | 6 1.059   | 1 1.011                  | 3 3 .025     | 2 0.773         | 205.01C              |               | 0.3963 |          | AVG            |
| 1.2-Dichloroethane                     |             | B 0.41    | 7 0.402                  | 8 0.409      | 4 10 DZS        | 7 0.370              | 21            | 0.0339 | 1        | AVG            |
| 1,2-Dichloroethane (mz 98              | 3)  0.031   | 2 0.03    | 9 0.035                  | 5 0.039      | 1 10 036        | AUB ULC              | <b>3</b> 1    | 0.8329 |          | AVG            |
| t-Amyl Hethyl Ether                    | 0.773       | 5 0.90    | 0 0.848<br>23 0.043      | יים מופי     | 5 0 04          | 5 0 038              | ė l           | 0.0416 |          | AVG            |
| n-Heptane                              | 0.041       | 9 0.04    | 50 0.015                 | 0.04         | 1 0 01/         | 4 0.015              | اة            | 0.0151 | ]        | AVG            |
| n-Butanol                              | The mark    | A 10'     | 2010 240                 | KO IN. 276   | 15 110 . 620    | S/ IU. 23/           | YI            | 0.2638 |          | AVG            |
| Trichloroethene                        | 10.247      | Y 0.28    | 64 0.274                 | BIO 277      | 0 0.24          | 2 0.267              | 6             | 0.269  |          | S AVG          |
| 1,2-Dichloropropane                    | *0.247      | 17   0.20 | 54 0.265                 | 6 0 27       | 010.26          | 0.272                | 8             | 0.267  | 7        | 6 AVG          |
| Methyl Hethacrylate                    | 0.23        | 02.0      | 87 0.189                 | 7 0 10       | 7 0.18          | 31 0.187             | 3             | 0.185  |          | B AVG          |
| Dibromomethane                         |             | **   ^ ^  | 2010 NR                  | 13 IO.OM     | 710.00          | 59 10.009            | 101           | 0.004  |          | 7 AVG          |
| 1.4-Dioxane                            | 10.004      | 12 10.00  | -212.22                  | 2 2 25       | 10 7/           | 10 7/5               | اغا           | 0.343  | 71       | 6 AVG          |
|                                        | A 70.       | ,pin 74   | ፕ <u></u> በተው ፕሬ         | J3 I U . 334 | AIO-24          | 40   0.342           | 101           | 10,373 |          |                |
| Bromodichloromethane<br>2-Nitropropane | 0.30        | 4B B.36   | 30   0.351<br>34   0.133 | 15   U. 35   | 5 0.14          | 40 0.345<br>57 0.136 | 9             | 0.136  | ' 1      | O AVG          |

Hinimum RRF for SPCC(#) = 0.10 (0.30 for Chiorobenzene, 1,1,2,2-Tetrachloroethane) Haximum XRSD for CCC(\*) = 30%

## 6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

| Lab Name: | Lancaster  | Laborate | ories (     | ontract:   |          |          |
|-----------|------------|----------|-------------|------------|----------|----------|
| Lab Code: | LANCAS     | Case N   | 0.:         | SAS No.:_  |          | SDG No.: |
|           | ID: HP071  | 59       | Calibration | n Date(s): | 03/10/04 | 03/10/04 |
|           | rge: (Y/N) |          | Calibration | n Times:   | 10:54    | 14:52    |

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

|                                                         |             |            |                      |           |           | T                        |            |         | X     | CAL.   |
|---------------------------------------------------------|-------------|------------|----------------------|-----------|-----------|--------------------------|------------|---------|-------|--------|
| COMPOUND                                                | RRF 4       | RRF 10     | RRF 20               | RRF 50    | RRF100    | RRF300                   | RRF        | RRF     | RSD   | METHOD |
|                                                         | 0 1666      | 0 1768     | 0 1858               | ARO1 0    | 0.1930    | 0.1942                   |            | 0.1821  | 11    | AVG    |
| -Chioroethyl Vinyl Ether                                |             | A / 888    | In /473              | IN 4715   | IN . 661U | 111-40CU I               |            | 0.4591  | 6     | AVG    |
| is-1,3-Dichloropropene                                  | 1           | A 2496     | 10 1220              | 10.5772   | 10.49/9   | : V.4004 I               |            | 0.4622  | 10    | AVG    |
| -Methyl-2-Pentanone                                     | is wonn     | 0 6170     | IN 274A              |           | 10.0402   | 10.02271                 |            | 0.8483  | 6     | AVG    |
|                                                         | 1           | A 4073     | IN EDOX              | IN SUNZ   | IU.3063   | 10.36/41                 |            | 0.5756  | 7     | AVG    |
| rans-1,3-Dichloropropene                                |             | A /604     | IN ECRE              | אטונא חו  | III. 3961 | 10.34011                 |            | 0.5847  | 7     | AVG    |
| thyl Methacrylate                                       | 1- 7407     | A 7///     | IN TROK              | IN 3405   | 10.3512   | 10.36301                 |            | 0.3318  | 4     | AVG    |
| ,1,2-Trichloroethane                                    | IA SOLE     | IA ./. A&1 | IN TORU              | UB_5/62   | 10.3041   | 10.33171                 |            | 0.3622  | 10    | AVG    |
| etrachioroethene                                        | 1           | A 4770     | סכחג או              | ווחא מו   | 10.5916   | 10.37001                 |            | 0.5945  | 5     | AVG    |
| ,3-Dichloropropane                                      |             | A /240     | in 2407              | LO.5485   | 10.5091   | 10.48381                 |            | 0.4753  | 11    | AVG    |
| - Hexanone                                              | 12 7470     | N 2220     | ነበስ ፈላልጹ             | 10.4259   | 10.4110   | 10.41141                 |            | 0.4085  | 6     | AVG    |
| ibromochloromethane                                     | A 7/4E      | 10 1057    | こい ておてつ              | ID.3900   | 10.5//5   | 10.3/401                 |            | 0.3780  |       | AVG    |
| , 2-Dibromoethane                                       | AL APPE     | 4 6207     | :In 6812             | חכלס חנ   | ID.9485   | 10.74301                 |            | 0.9518  | 7     | AVG    |
| hlorobenzene .                                          | 1           | 14 3003    | 2222 015             | HAAF. OIL | 10.3586   | וססכב.טו:                |            | 0.3549  | 7     | AVG    |
| ,1,1,2-Tetrachloroethane                                | In norm     | 14 /575    | :14 <b>&amp;</b> 056 | 43 AUGS   | 11.3330   | 1112000                  |            | 1.5236  | 10    | AVG    |
| thylbenzene                                             | 10.6136     | 0.075      | 0.6241               | 0 6242    | 0.6068    | 0.5994                   |            | 0.5947  | 12    | AVG    |
| n+p-Xylene                                              | 0.4371      | 0.033      | 0.6211               | 0 4108    | 0.6030    | 0.5953                   |            | 0.5908  | 11    | AVG    |
| (ylene (Total)                                          | 0.4500      | 0.04/      | 0.021                | 0 6111    | 0.5954    | 0.5870                   | 1          | 0.5830  | 11    | AVG    |
| o-Xylene                                                | 0.450       | 0.023      | 110.0136             | 1 0870    | 1.0647    | 1.0726                   | l          | 1.0265  | 11    | AVG    |
| Styrene                                                 | 10.7895     | 1.005      | 7 7405               | n 3547    | 0.3531    | 0.3551                   |            | 0.3416  | 9     | AVG    |
| Bromoform                                               | 1           |            | 3 [4 ZZNE            | 114 &AN2  | 11.40M    | ככעב. ווו                | l          | 1.3563  | 14    | AVG    |
| I sopropyl benzene                                      | 0.996       | 1.477      | 2 1 4703             | 0 0220    | 0.020     | 0.0224                   | l          | 0.0210  |       | AVG    |
| Cyclohexanone                                           | 0.0199      | 0.021      | 310.0201             | 1 0627    | 1 006     | 0 0025                   | ļ          | 1.0419  |       | AVG    |
| Cyclohexanone<br>1,1,2,2-Tetrachloroethane              | #0.986      | 11.130     | 71.0047              | 0 347     | 0350      | 10.3000                  | l          | 0.3665  |       | AVG    |
| 1,1,2,2-Tetrachloroethane<br>trans-1,4-Dichloro-2-Buten | e   0.323   | 0.3/9      | יצפביטוט             | ASER OF   | 0.207     | 0.7928                   | ł          | 0.8142  |       | AVG    |
| Bromobenzene                                            | 0.704       | 10.901     | 3   U. 0476          | 10.034    | 0.000     | 7 0.3136                 | l          | 0.3239  |       | AVG    |
| 1,2,3-Trichloropropane                                  | 0.300       | 10.340     | 5   U . 33331        | 3 060     | 2 800     | 7 2.6360                 | 1          | 2.8393  |       | AVG    |
| n-Propylbenzene                                         | 2.207       | 13.164     | 013.0776             | 10.000    | 10 667    | 3 0.6195                 | l          | 0.6534  |       | AVG    |
| 2-Chlorotoluene                                         | 0.503       | 7 0.744    | 5 0.105              | 10.003    | 2 044     | 2 1.9304                 | Ī          | 2.0299  |       | AVG    |
| 1,3,5-Trimethylbenzena                                  | 1.575       | 2.276      | 7 2.101              | 0 717     | 10 487    | 222A 0 3                 | ì          | 0.6861  |       |        |
| 4-Chlorotoluene                                         | 0.543       | \$10.777   | 5 0./33              | 10.111    | 0.001     | 0.6552                   | i          | 0.4690  |       |        |
| tert-Butylbenzens                                       | 0.403       | 5 0.525    | 710.494              | ( U. 400  | 10.400    | 7 0.4328                 | 1          | 0.5420  |       |        |
| Pentachioroethane                                       | 0.543       | 0.583      | 510.240              | 10.344    | 7 446     | 8 0.5194                 |            | 2, 1237 |       |        |
| 1,2,4-Trimethylbenzene                                  | 1.591       | 2 2.367    | 6 2.280              | 12.20/    | 7 202     | 3 2.0619                 | 1          | 2.2517  |       |        |
| sec-Butylbenzene                                        | 1.957       | 4 2.422    | 6 2.389              | 12.302    | 2.676     | 6 2.0661                 | į.         | 2.0373  | s a   |        |
| p-1sopropyltoluene                                      | 1.763       | 9 2.187    | 6 2. 152             | 512.143   | 1 6.047   | 0 1.9281                 | .1         | 1.307   |       |        |
| 1.3-Dichlorobenzene                                     | 0.996       | B 1.463    | 2 1.393              | בסכ.וןכ   | 1 4 704   | 9 1.2810                 |            | 1.375   |       |        |
| 1,4-Dichlorobenzene                                     | 1.078       | 0 1.515    | 011.4//              | U  .422   | 0 4 700   | 4 1.3331                 |            | 1.668   |       |        |
| n-Butylbenzene                                          | 11.472      | 2 1.754    | 9 1.133              | 711.736   | 2 1 226   | 7 1.5760                 |            | 1.296   |       | AVG    |
|                                                         | 11.015      | 211.42     | 37.3/9               | 7 0 270   | 0 0 224   | 10. 274                  | il         | 0.2319  |       |        |
| 1.2-bibromo-3-Chioropropa                               | 1e   D. 193 | B 0.244    | 17 0.243             | 10.237    | 2 0 752   | 2 0 718                  | íl 💮       | 0.652   |       |        |
| 1.2.4-Trichlorobenzene                                  | 0.345       | 4 0.63     | 0.090                | 7 U. //1  | 4 IO 324  | 2 0.718                  | 51         | 0.342   | -     |        |
| Hexach Lorobutadi ene                                   | [0.340      | 8 0.36     | 10 U.304             | 4 2 475   | 4 0.335   | 6 0.299<br>4 2.595       | 7          | 2.254   |       |        |
| Nachthal eng                                            | 1.066       | 4 2. 15    | 00 (2.3/3            | 4 E.O/6   | 20 70     | 4 0.660                  | s l        | 0.620   |       |        |
| 1.2.3-Trichlorobenzene                                  |             | 10a.010    | U4   U. 6/C          | 0./42     | =         | # 0.000.                 |            |         |       |        |
|                                                         |             | = ===      | 20 2000              | 1 0 354   |           |                          |            | 0.261   |       | AVG    |
| Dibromofiuoromethane                                    | (0.28       | 7 0.25     | יים ועובי            | 2 0 041   | B 0 04    | 33 0.256                 | 6          | 0.062   | 8 4   | AVG    |
|                                                         | 0.06        | 610.06     | 18 0.06              | 2 0.00    | 7 0 25    | 11 0.061                 | آا         | 0.265   | ol 3  | AVG    |
|                                                         | 1) [0.28    | 7 0.26     | 32 JU. 26.           | 1 U. CO   | 4 0 67    | מבח חודה                 | 51         | 0.041   | اة ا  | AVG    |
| 1,2-Dichloroethane-d4(mz1                               | 0430.04     | 50 0.04    | 12 0.04              | 71 10.041 | 11 0.02   | לכט.טונק<br>מדם חוצם     |            | 0.856   |       | AVG    |
| Toluene-d8(mz100)                                       | 10.96       | 34 0.84    | 50 0.84              | 55 0.82   | 77 JU.82  | 53 0.830                 | 긺          | 0.432   |       | AVG    |
| Toluene-d8(mz100)<br>4-Bromofluorobenzene(mz17          |             | ha]a /4    | 74   0 / 21          | NR IN 67  | 15 ID. 61 | 92   0.421<br>32   1.261 | 71         | 11.289  | -     | S AVG  |
| Toluene-d8                                              | 10.22       | 11 14 DL   | 02 I 1 7A            | 83   1.25 | 7517.25   | 26 1.601                 | <i>[</i> [ | 11.503  | ין די | ممناء  |

Hinimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Haximum XRSD for CCC(\*) = 30X

#### 6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

| Lab Name: Lancaster Laborator | ies Contract:               |                         |           |         |                |
|-------------------------------|-----------------------------|-------------------------|-----------|---------|----------------|
| Lab Code: LANCAS Case No.     | : SAS No.:                  | SDG No.:                |           |         |                |
| Instrument ID: HP07159 C      | alibration Date(s): 03      | /10/04 03/10/           | 04        |         |                |
|                               | alibration Times: 10        | :54 14:52               |           |         |                |
| Matrix: (soil/water) WATER Le | vel: (low/med) LOW GC (     | Column: DB-624 lD: .    | 25        |         |                |
|                               | mm10118.d RRF 10= n         | m10i15.d RRF 20=        | nm10i14.d |         |                |
| RRF 50= nm10113.d RRF100=     | nm10i17.d RRF300= n         | m10i11.d RRF =          |           |         |                |
|                               | PDE 40 PRE 20 R             | RF 50 RRF100 RRF300     | RRF RRF   | RSD RSD | CAL.<br>HETHOD |
| CUMPOUND                      | RRF 4   RRF 10   RRF 20   R | *****   ******   ****** | 0.4781    |         | AVG            |

Average XRSD

8

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum XRSD for CCC(\*) = 30%

#### 7A VOLATILE CONTINUING CALIBRATION CHECK

| ab | Name: | Lancaster | Laboratories | Contract: |
|----|-------|-----------|--------------|-----------|
|----|-------|-----------|--------------|-----------|

Lab Code: LANCAS Case No.:\_\_\_\_ SAS No.:\_\_\_ SDG No.:\_\_\_

Instrument ID: HP07159 Calibration Date: 03/18/04 Time: 13:08

Lab File ID: nml8c01.d Init. Calib. Date(s): 03/10/04

03/10/04

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

| 1                           |        |         | ACTUAL   | TRUE    | 8      |
|-----------------------------|--------|---------|----------|---------|--------|
| COMPOUND                    | RRF    | RRF100  | CONC.    | CONC.   | DRIFT  |
|                             | -====  |         | ======   | 2200042 | ====== |
| Dichlorodifluoromethane     | 0.3549 | 0.3485  | 98.20    | 100     | -2     |
| # Chloromethane             |        | 0.3192  |          | 100     | -5 #   |
| * Vinyl Chloride            |        | 0.3109  |          | 100     | j -2 * |
| Bromomethane                | 0.2030 | 0.1994  | 98.26    | 100     | -2     |
| Chloroethane                | 0.1770 | 0.1721  | 97.26    | 100     | -3     |
| Trichlorofluoromethane      |        | 0.4576  |          | 100     | 6      |
| Ethanol                     | 0.0019 | 0.0014  | 1893.13  | 2500    | -24    |
| Acrolein                    |        | 0.0650  |          |         | -24    |
| * 1,1-Dichloroethene        | •      | 0.2321  |          | 100     | 5 '    |
| Freen 113                   |        | 0.2087  |          | 100     | 0      |
| Acetone                     |        | 0.0308  |          | 200     | -45    |
| Methyl Iodide               | 0.4066 | 0.4612  | 113.43   | 100     | 13     |
| 2-Propanol                  | 0.0331 | 0.0245  | 370.23   | 500     | -26    |
| Carbon Disulfide            |        | 0.7823  |          | 100     | 10     |
| Allyl Chloride              | 0.4349 | 0.4130  | 94.95    | 100     | -5     |
| Methylene Chloride          |        | 0.2666  |          | 100     | •      |
| t-Butyl Alcohol             | 0.0596 | 0.0436  | 365.31   | 500     | •      |
| Acrylonitrile               | 0.1531 | 0.1185  | 77.43    | 100     | -23    |
| trans-1,2-Dichloroethene    | 0.2493 | 0.2679  | 107.48   | 100     | ,      |
| Methyl Tertiary Butyl Ether | 0.8596 | 0.9119  | 106.08   | 100     | . 6    |
| n-Hexane                    | 0.2309 | 0.2489  | 107.80   | 100     | ,      |
| 1,2-Dichloroethene (total)  | 0.2598 | 0.2802  | 215.61   | 200     | ļ 8    |
| # 1,1-Dichloroethane        | 0.4545 | 0.4872  | 107.20   | 100     | 7      |
| di-Isopropyl Ether          |        | 0.9203  |          | 100     | 7      |
| 2-Chloro-1,3-Butadiene      | 0.3666 | 0.3733  | 101.83   | 100     | ,      |
| Ethyl t-Butyl Ether         | 0.8369 | 0.9112  | 108.87   |         | •      |
| cis-1,2-Dichloroethene      |        | 0.2924  |          |         | •      |
| 2-Butanone                  | 0.0633 | 0.0430  | 135.77   | 200     | -32    |
| 2,2-Dichloropropane         | 0.4040 | 0.4375  | 10B.30   | 100     | •      |
| Propionitrile               | 0.0596 | 0.0446  | 373.74   | ,       | ,      |
| Methacrylonitrile           | 0.1580 | 0.1328  | 210.08   |         | •      |
| Bromochloromethane          |        | 0.1559  |          | •       | ,      |
| Tetrahydrofuran             | 0.0516 | (0.0381 |          | •       | •      |
| * Chloroform                | 0.4457 | 0.4821  | 108.17   | •       | •      |
| 1,1,1-Trichloroethane       | 0.405  | 0.4243  | 104.61   | .  100  | •      |
| Cyclohexane                 | 0.3402 | 0.3289  | 92.25    | 100     | ) -B   |
| -1                          | _i     | _       | <u> </u> | .       | _      |
|                             |        |         |          |         |        |

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(\*)=20%

## VOLATILE CONTINUING CALIBRATION CHECK

| Lab | Name:  | Lancaster  | Danori | 2001.400   |         |              |        |          |
|-----|--------|------------|--------|------------|---------|--------------|--------|----------|
| Lab | Code:  | LANCAS     | Case   | No.:       | SAS No  |              | SDG No | • •      |
| Ins | trumen | t ID: HP07 | 159    | Calibratic | n Date: | 03/18/04     | Time:  | 13:08    |
| Lab | File   | ID: nml8c0 | ı.d    | Init. Cali | b. Date | (s): 03/10/0 | 4      | 03/10/04 |

Contract:

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

|                                  |            |        | ACTUAL  | TRUE     | 윰     |
|----------------------------------|------------|--------|---------|----------|-------|
| COMPOUND                         | RRF        | RRF100 | CONC.   | CONC.    | DRIFT |
|                                  | =====      | =====  | ======  | 202222   |       |
| 1,1-Dichloropropene              | 0.3333     | 0.3342 | 100.27  | 100      | 0     |
| Carbon Tetrachloride             | 0.3576     | 0.3675 | 102.75  | 100      | 3     |
| Isobutyl Alcohol                 | 0.0188     | 0.0136 | 908.14  | 1250     | -27   |
| Benzene                          | 1.0000     | 1.0468 | 104.67  | 100      | 5     |
| 1,2-Dichloroethane               |            | 0.4243 |         | 100      | 7     |
| 1,2-Dichloroethane (mz 98)       | 0.0339     | 0.0354 | 104.34  | 100      | 4     |
| t-Amyl Methyl Ether              |            | 0.8892 |         | 100      | 7     |
| n-Heptane                        |            | 0.0539 |         | 100      | 29    |
| n-Heptane<br>n-Butanol           |            |        | 1768.45 | •        | -29   |
| n-Bucanoi<br>Trichlorosthens     |            | 0.2699 |         |          | 2     |
| 1,2-Dichloropropane              |            | 0.2802 |         | •        | 4     |
| Methyl Methacrylate              |            | 0.2446 |         | •        | -9    |
| Dibromomethane                   | •          | 0.1956 |         | •        | 5     |
|                                  |            | 0.0034 |         | :        | -23   |
| 1,4-Dioxane Bromodichloromethane |            | 0.3727 |         | 100      | 8     |
|                                  |            | 0.1139 |         | ,        | -16   |
| 2-Nitropropane                   | 4          | 0.1820 |         | ,        | •     |
| 2-Chloroethyl Vinyl Ether        | •          | 0.4865 |         | •        | 6     |
| cis-1,3-Dichloropropene          |            | 0.3754 |         |          |       |
| 4-Methyl-2-Pentanone             |            | 0.8247 |         | •        | -3    |
| Toluene                          |            | 0.5836 |         |          | !     |
| trans-1,3-Dichloropropene        |            | 0.5421 | •       | 5        | !     |
| Ethyl Methacrylate               | 1          | 0.3255 |         | <u> </u> | •     |
| 1,1,2-Trichloroethane            | ,          | 0.3471 |         | 1        | :     |
| Tetrachloroethene                |            | 0.5726 | ,       |          | ļ     |
| 1,3-Dichloropropane              |            | 0.3463 |         |          | :     |
| 2-Hexanone                       | <b>.</b> . | 0.4219 |         | •        | i 3   |
| Dibromochloromethane             |            | 0.3626 |         | •        | •     |
| 1,2-Dibromoethane                | ,          | 0.9433 | 0       |          | •     |
| Chlorobenzene                    |            | 0.3617 | •       | ,        |       |
| 1,1,1,2-Tetrachloroethane        |            | 1.4791 |         |          | •     |
| Ethylbenzene                     | •          | 0.5830 |         |          | :     |
| m+p-Xylene                       |            | 0.5820 |         |          | •     |
| Xylene (Total)                   |            | 0.5798 | 1       |          | ,     |
| o-Xylene                         | •          | 1.0415 |         | •        |       |
| Styrene                          | •          |        | •       |          | -     |
| # Bromoform                      | 10 2421    | 0.3316 | 97.07   | 100      | ) -3  |

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(\*)=20%

## VOLATILE CONTINUING CALIBRATION CHECK

| Lab Name: | Lancaster Labo | oratories | Contract:            |             |
|-----------|----------------|-----------|----------------------|-------------|
| Lab Code: | LANCAS Ca:     | se No.:   | SAS No.:             | SDG No.:    |
| Instrumen | E ID: HP07159  | Calibrati | on Date: 03/18/04    | Time: 13:08 |
| Lab File  | ID: nml8c01.d  | Init. Cal | ib. Date(s): 03/10/0 | 4 03/10/04  |

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

|                                       |         | ļ       | ACTUAL  | TRUE     | 8      |
|---------------------------------------|---------|---------|---------|----------|--------|
| COMPOUND                              | RRF     | RRF100  | CONC.   | CONC.    | DRIFT  |
|                                       |         |         |         | •        |        |
| Isopropylbenzene                      | 1.3563  | 1.3453  | 99.19   | 100      | -1     |
| Cyclohexanone                         | 0.0210  | 0.0136  | 808.50  |          | -35    |
| 1,1,2,2-Tetrachloroethane             |         | 0.8730  |         |          |        |
| trans-1,4-Dichloro-2-Butene           | 0.3665  | 0.3095  | 211.14  |          |        |
| Bromobenzene                          | 0.8142  | 0.7919  | 97.27   |          |        |
| 1,2,3-Trichloropropane                | 0.3239  | 0.2766  | 85.39   |          |        |
| n-Propylbenzene                       | 2.8393  | 2.7627  | 97.30   | 100      | -3     |
| 2-Chlorotoluene                       | 0.6534  | 0.6318  | 96.69   | 100      | -3     |
| 1,3,5-Trimethylbenzene                | 2.0299  | 2.0104  | 99.04   | 100      | -1     |
| 4-Chlorotoluene                       | 0.6861  | 0.6634  | 96.70   | 100      | -3     |
| tert-Butylbenzene                     | 0.4690  | 0.4656  | 99.26   | 100      | -1     |
| Pentachloroethane                     | 0.5420  | 0.5346  | 98.64   | 100      | -1     |
| 1,2,4-Trimethylbenzene                |         | 2.1100  |         | 100      | -1     |
| sec-Butylbenzene                      | 2.2517  | 2.3876  | 106.04  | 100      | 6      |
| p-Isopropyltoluene                    | 2.0373  | 2.1710  | 106.56  | 100      | 7      |
| 1.3-Dichlorobenzene                   |         | 1.3120  |         | 100      | 0      |
| 1,4-Dichlorobenzene                   |         | 1.3664  |         | 100      | -1     |
| n-Butylbenzene                        |         | 1.8898  | 2       | 100      | 13     |
| 1.2-Dichlorobenzene                   | 1       | 1.2819  | 2       | 100      | -1     |
| 1,2-Dibromo-3-Chloropropane           |         |         |         | 100      | -24    |
| 1,2,4-Trichlorobenzene                | 0.6524  | 0.7932  | 109.55  | 100      | 10     |
| Hexachlorobutadiene                   |         | 0.4219  |         | •        | 23     |
|                                       | ,       | 2.0932  | 2       | 100      | -19    |
| Naphthalene<br>1,2,3-Trichlorobenzene |         | 0.6813  | •       |          | 2      |
| 1,2,3-TT1Cn10robenzene                | •       |         | 2000000 | ,        | ====== |
|                                       | ,       | 0.2570  | 2       |          |        |
| Dibromofluoromethane                  | 1       | 0.0589  |         | <u>.</u> | -6     |
| 1,2-Dichloroethane-d4                 |         |         |         |          | •      |
| Dibromofluoromethane (mzll1)          | 10.2030 | 10.2303 | 46.68   | •        | •      |
| 1,2-Dichloroethane-d4 (mz104          | 10.0410 | 0.8121  | 47.39   | •        | ,      |
| Toluene-d8 (mz100)                    |         |         |         |          | _      |
| 4-Bromofluorobenzene (mz174)          | 10.4320 | 10.44/3 |         |          |        |
| Toluene-d8                            | 1       | 1.2316  |         | ,        |        |
| 4-Bromofluorobenzene                  | 10.4781 | 0.4723  | 47.37   | 1 50     | 1 -7   |

Average %Drift 9

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(\*)=20%

### **APPENDIX A**

# GC/MS SEMIVOLATILES DATA DELIVERABLES FORMS

#### 5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

| Lab | Name:  | Lancaster  | Laboratories | Contract:         |                |
|-----|--------|------------|--------------|-------------------|----------------|
| Lab | Code:  | LANCAS     | Case No.:    | SAS No.:          | SDG No.:       |
| Lab | File 1 | D: hd304.d |              | DFTPP Injection I | Date: 04/28/04 |

DFTPP Injection Time: 15:46 Instrument ID: HP04629

| 1     |                                    | % RELATIVE                              |
|-------|------------------------------------|-----------------------------------------|
| m/e   | ION ABUNDANCE CRITERIA             | ABUNDANCE                               |
| ====  |                                    | ======================================= |
| 51    | 30.0 - 60.0% of mass 198           | 48.3                                    |
| 6B    | Less than 2.0% of mass 69          | 0.0 ( 0.0)1                             |
| 69    | Mass 69 relative abundance         | 79.2                                    |
| 70    | Less than 2.0% of mass 69          | 0.45 ( 0.57)1                           |
| 127   | 40.0 - 60.0% of mass 198           | 47.5                                    |
| 197   | Less than 1.0% of mass 198         | 0.0                                     |
| 1 198 | Base peak, 100% relative abundance | 100.0                                   |
| 199   | 5.0 to 9.0% of mass 198            | 6.34                                    |
| 275   | 10.0 - 30.0% of mass 198           | 20.5                                    |
| 365   | Greater than 1.00% of mass 198     | 2.79                                    |
| 441   | Present, and less than mass 443    | 13.3                                    |
| 442   | Greater than 40.0 % of mass 198    | 85.7                                    |
| 443   | 17.0 - 23.0% of mass 442           | 16.6 ( 19.4)2 <br>                      |
| i     | Ī                                  | t                                       |

1-Value is % mass 69 2-Value is % mass of 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

| 1  | EPA        | LAB       | LAB     | DATE     | TIME     |
|----|------------|-----------|---------|----------|----------|
| i  | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED | ANALYZED |
| i  | ********   |           |         |          |          |
| 01 | SSTD080    | STD1074   | hd305.d | 04/28/04 | 16:09    |
| 02 | SBLKWE1188 | SBLKWE118 | hd306.d | 04/28/04 | 17:25    |
| 03 | 118WELCS8  | 118WELCS  | hd307.d | 04/28/04 | 18:37    |
| 04 | N4029      | 4260940   | hd308.d | 04/28/04 | 19:33    |
| 05 | N4029M5    | 4260940   | hd309.d | 04/28/04 | 20:29    |
| 06 | N4029MSD   | 4260940   | hd310.d | 04/28/04 | 21:25    |
| 07 | PPTCL      | 4258124   | hd311.d | 04/28/04 | 22:22    |
| 08 | PPTCLMS    | 4258124   | hd312.d | 04/28/04 | 23:18    |
| 09 | TLA        | 4258483   | hd313.d | 04/29/04 | 00:14    |
| 10 | TLB        | 4258486   | hd314.d | 04/29/04 | 01:10    |
| 11 | 300NV      | 4258799   | hd315.d | 04/29/04 | 02:07    |
| 12 | 300NVMS    | 4258799   | hd316.d | 04/29/04 | 03:03    |
| i  |            | İ         |         | l        |          |

; jj

11

; į

|    | Lab | Name:Lancaster | Labo | oratories | Con | tract | : |     | <del></del> |
|----|-----|----------------|------|-----------|-----|-------|---|-----|-------------|
| ŗ. | Lab | Code:          | Case | No.:      | SAS | No.:  |   | SDG | No.:        |

| ,   | EPA        | S1     | 52     | \$3    | S4       | S5     | S6       | TOT       |
|-----|------------|--------|--------|--------|----------|--------|----------|-----------|
|     | SAMPLE NO. | (2PP)# | (PHL)# | (NBZ)# | (FBP)#   | (TBP)# | (TPH)#   | OUT       |
|     | ========== |        |        | 22222  | =====    | -===== |          | -==       |
| 01  | SBLKWE1188 | 61     | 41     | 83     | 80       | 94     | 83       | 0         |
| 02  | 118WELCS8  | 62     | 41     | 93     | 86       | 98.    | 90       | 0         |
| 03  | N4029      | 56     | 38     | 91     | 83       | 80     | 88       | 0         |
| 04  | N4029MS    | 59     | 41     | 93     | 88       | 78     | 84       | 0         |
| 05  | N4029MSD   | 58     | 40     | 93     | 93       | 79     | 85       | 0         |
| 06  | PPTCL      | 63     | 40     | 94     | 81       | 100    | 84       | 0         |
| 07  | PPTCLMS    | 63     | 42     | 95     | 92       | 103    | 91       | 0         |
| .0B |            | 60     | 39     | 92     | 82       | 88     | 84       | 0         |
| 09  | TLB        | 59     | 40     | 91     | 85       | 89     | 79       | 0         |
| 10  | 300NV      | 60     | ~.39   | 95     | 83       | 98     | 8B       | 0         |
| 11  | 300NVI4S   | 64     | 42     | 97     | 94       | 102    | 90       | 0         |
| 12  | 0947B      | 61     | 40     | 92     | 82       | 94     | 86       | 0         |
| 13  | !          | 62     | 40     | 92     | B4       | 96     | 91       | 0         |
| 14  | :          | 60     | 40     | 93     | 84       | 96     | 71       | 0         |
| 15  | •          | 65     | 42     | 95     | 94       | 102    | 84       | 0         |
| 16  |            | 51     | 32     | 91     | 85       | 73     | 66       | 0         |
| 17  |            | 28     | 18     | 89     | 81       | 47     | 67       | 0         |
| 18  |            | 60     | 39     | 91     | 84       | 98     | 90       | 0         |
| 19  | 1          | 60     | 39     | 90     | B1       | 94     | 86       | 0         |
|     |            | i      | i      | İ      | <u> </u> |        | <u> </u> | ــــــــا |

|            |        |                        | QC LIMITS |
|------------|--------|------------------------|-----------|
| \$1        | (2FP)  | = 2-Fluorophenol       | (23-94)   |
|            |        | = Phenol-d6            | (10-80)   |
|            |        | = Nitrobenzene-d5      | (54-124)  |
|            |        |                        | (64-112)  |
| <b>\$4</b> | (FBP)  | = 2-Fluorobiphenyl     | (45-142)  |
|            |        | = 2,4,6-Tribromophenol | (53-124)  |
| 06         | (TOUT) | - Ternhenvl-dl4        | 123-1241  |

page 1 of 1

FORM II SV-1

<sup>#</sup> Column to be used to flag recovery values
\* Values outside of contract required QC limits

D Surrogate diluted out

#### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO. |
|-----|--------|-----|
|     |        |     |

| Lab | Name: | Lancaster | Laboratories | Contract: | SBLKWE1188 |
|-----|-------|-----------|--------------|-----------|------------|
| Lab | Code: | LANCAS    | Case No.:    | SAS No.:  | SDG No.:   |

Matrix: (soil/water) WATER Lab Sample ID: SBLKWE118

Sample wt/vol: 500 (g/mL)ML Lab File ID: hd306.d

Level: (low/med) LOW Date Received:

% Moisture: not dec: dec: Date Extracted: 04/28/04

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 04/28/04

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

|   | CAS NO.  | COMPOUND     | (mg/L or mg/Kg) | MDL      | MG/L  | Q        |     |
|---|----------|--------------|-----------------|----------|-------|----------|-----|
| ı | 110-86-1 | Pyridine     |                 |          | 0.004 | U        | _l  |
| i | 106-46-7 | 1,4-Dichloro | benzene         | 1        | 0.002 | ט        | -   |
| i | 95-48-7  | 2-Methylphen | ol              | 1        | 0.002 | ן ט      |     |
| i | 106-44-5 | 4-Methylphen |                 |          | 0.004 | ט        | - [ |
| i | 67-72-1  | Hexachloroet |                 | <u> </u> | 0.002 | U        | -1  |
| i | 98-95-3  | Nitrobenzene |                 | i        | 0.002 | Ū        | F   |
| i | 87-68-3  | Hexachlorobu | tadiene         | 1        | 0.002 | ן ט      | - 1 |
| í | 88-06-2  | 2,4,6-Trichl | orophenol       | i        | 0.002 | <b>ט</b> | -   |
| i | 95-95-4  | 2,4,5-Trichl |                 | <u> </u> | 0.002 | ן ט      | - 1 |
| i | 121-14-2 | 2,4-Dinitrot |                 | <u>i</u> | 0.002 | ן ט      | I   |
| i | 118-74-1 | Hexachlorobe |                 |          | 0.002 | U        | Į   |
| i | 87-86-5  | Pentachlorop |                 | _        | 0.006 | ט ן      | ١   |
| 1 |          |              |                 | 1        |       | I        | i   |

#### 48 SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

| ļ |            |
|---|------------|
|   | SBLKWE1188 |
| ĺ |            |

i ji

i -

ij

1 ;

ij

Lab Name: Lancaster Laboratories Contract:\_\_\_\_

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab Sample ID: SBLKWE118

Lab File ID: hd306.d

Extraction: Sepf

Date Extracted: 04/28/04

Time Analyzed: 17:25

Date Analyzed: 04/28/04

Matrix (soil/water): WATER Level: (low/med) LOW

Instrument ID: HP04629

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| 1  | EPA        | LAB         | LAB                                     | DATE     |
|----|------------|-------------|-----------------------------------------|----------|
| i  | SAMPLE NO. | SAMPLE ID   | FILE ID                                 | ANALYZED |
|    |            | =========== | ======================================= |          |
| 01 | 118WELCS8  | 118WELCS    | hd307.d                                 | 04/28/04 |
| 02 | N4029      | 4260940     | hd308.d                                 | 04/28/04 |
| 03 | N4029MS    | 4260940     | hd309.d                                 | 04/28/04 |
| 04 | N4029MSD   | 4260940     | hd310.d                                 | 04/28/04 |
| 05 | PPTCL      | 4258124     | hd311.d                                 | 04/28/04 |
| 06 | PPTCLMS    | 4258124     | hd312.d                                 | 04/28/04 |
| 07 | TLA        | 4258483     | hd313.d                                 | 04/29/04 |
| 08 | TLB        | 4258486     | hd314.d                                 | 04/29/04 |
| 09 | 300NV      | 4258799     | hd315.d                                 | 04/29/04 |
| 10 | 300NVMS    | 4258799     | hd316.d                                 | 04/29/04 |
| 11 | 0947B      | 4259583     | hd342.d                                 | 04/29/04 |
| 12 | 0947A      | 4259584     | hd343.d                                 | 04/29/04 |
| 13 | 6489N      | 4261122     | hd344.d                                 | 04/29/04 |
| 14 | 6489NMS    | 4261122     | hd345.d                                 | 04/29/04 |
| 15 | 6490N      | 4261126     | hd346.d                                 | 04/29/04 |
| 16 | 6491N      | 4261130     | hd347.d                                 | 04/30/04 |
| 17 | 14494      | 4261536     | hd348.d                                 | 04/30/04 |
| 18 | 14794      | 4261537     | hd349.d                                 | 04/30/04 |
|    |            |             |                                         |          |
|    |            |             |                                         |          |

| COMMENTS: |  |
|-----------|--|
|           |  |

#### WATER GC/MS SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: LANCASTER LABS

Lab Code: LANCAS

UNSPIKED:hd308.d N4029 4260940 AMT USED:330.0 mL

INSTRUMENT: HP04629

MATRIX SPIKE:hd309.d N4029MS 4260940 AMT USED: 330.0 ml FINAL VOL: 1 ml SPIKE DUPLICATE:hd310.d N4029MSD 4260940 AMT USED: 330.0 ml FINAL VOL: 1 ml

FINAL VOL:1 ml FINAL VO

DILUTION FACTOR: 1

BATCH: 04118WAE026

MOISTURE:

FYTRACT SPIKE LEVEL: 303.03

| 2010 I STURE:         |             | EXTRACT      | SPIRE LEV       | FF: 303.03      |                  |        |         |                      |        |    |            |        |
|-----------------------|-------------|--------------|-----------------|-----------------|------------------|--------|---------|----------------------|--------|----|------------|--------|
| COMPOUND<br>NAME      | MS<br>SPIKE | NSD<br>SPIKE | US CONC<br>UG/L | NS CONC<br>UG/L | HSD CONC<br>UG/L | MS REC | MSD REC | Range<br>LOWER-UPPER | INSPEC |    | RPD<br>HAX | INSPEC |
| Pyridine              | 303.03      | 303.03       | ND              | 180.01          | 177.70           |        | 59      | 31- 8B               | YES    | 1  | 30         | YES    |
| 1.4-Dichlorobenzene   | 303.03      | 303.03       | ND              | 228.40          | 183.18           | 75     | 60      | 42-105               | YES    | 22 | 30         | YES    |
| 2-Nathylphenal        | 303.03      | 303.03       | ND              | 214.95          | 212.98           | 71     | 70      | 34-119               | YES    | 1  | 30         | YES    |
| 4-Mathylphenol        | 303.03      | 303.03       | . HD            | 204.71          | 195.66           | 68     | 65      | 30-114               | YES    | 4  | 30         | YES    |
| He achleroethane      | 303.03      | 303.03       | ND              | 185.83          | 149.06           | 61     | 49      | 20-116               | YES    | 55 | 30         | YES    |
| Nitrobenzene          | 303.03      | 303.03       | ND              | 262.32          | 251.88           | 87     | 83      | 43-133               | YES    | 4  | 30         | YES    |
| Hexachtorobutadiene   | 303.03      | 303.03       | KD .            | 172.60          | 150,11           | 57     | 50      | 31-122               | YES    | 14 | 30         | YES    |
| 2.4.6-Trichlorophenol | 303.03      | 303.03       | ND              | 213.71          | 220.65           | 71     | 73      | 31-140               | YES    | 3  | 30         | YES    |
| 2.4.5-Trichlorophenol | 303.03      | 303.03       | ND              | 244.80          | 246.76           | 81     | 81      | 38-138               | YES    | 1  | 30         | YES    |
| 2,4-Dinitrotoluene    | 303.03      | 303.03       | ND              | 283.93          | 282.59           | 94     | 93      | 43-145               | YES    | 0  | 30         | YES    |
| Rexach Lorobenzene    | 303.03      | 303.03       | ND              | 255.75          | 237.98           | 84     | . 79    | 65-114               | YES    | 7  | 30         | YES    |
| Pentachlorophenol     | 303.03      | 303.03       | ND              | 212.29          | 205.80           | 70     | 68      | 20-130               | YES    | 3  | 30         | YES    |

COMMENTS:

# Lancaster Laboratories, Inc. WATER Semi Volatile Laboratory Control Sample Recovery

LAB HAME: LANCASTER LABS

LAB CODE: LANCAS

INSTRUMENT: HPD4629

Method: SW-846 8270C

File ID: hd307.d

LCS SAMPLE NO: 118VELCS

BATCH: 04118WAE026

Sample Code: 118WELCSB

| COMPOUND NAME         | level<br>Spike | LCS CONC | GCREF REC | RANGE<br>LOWER-UPPER | INSPEC |
|-----------------------|----------------|----------|-----------|----------------------|--------|
| Pyridine              | 200.00         | 104.34   | 52        | 31 - 88              | YES    |
| 1.4-Dichlorobenzene   | 200.00         | 147.44   | 74        | 41 - 102             | YES    |
| 2-Methylphenol        | 200.00         | 155.69   | 78        | 56 - 105             | YES    |
| 4-Hethylphenol        | 200.00         | 145.78   | 73        | 52 - 97              | ÝES    |
| Hexach Loroethane     | 200.00         | 120.75   | 60        | 22 - 102             | YES    |
| Nitrobenzene          | 200.00         | 175.03   | 88        | 63 - 112             | YES    |
| Hexachlorobutadiene   | 200.00         | 114.18   | 57        | 20 - 111             | YES    |
| 2,4,6-Trichlorophenol | 200.00         | 167-09   | 84        | 71 - 109             | YES    |
| 2,4,5-Trichlorophenol | 200.00         | 172.89   | 86        | 70 - 115             | YES    |
| 2,4-Dinitrotoluene    | 200.00         | 188.91   | 94        | 75 - 122             | YES    |
| Hexachlorobenzene     | 200.00         | 164.55   | 82        | 71 - 110             | YES    |
| Pentachlorophenol     | 200.00         | 162.48   | 81        | 50 - 112             | YES    |

|           | ====================================== | NC = Could not | sammennemente<br>calculate |
|-----------|----------------------------------------|----------------|----------------------------|
| Comments: |                                        |                |                            |
|           |                                        |                |                            |
|           |                                        |                |                            |

#### BB SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Contract:\_\_\_\_ Lab Name: LANCASTER LABS

Lab Code: LANCAS Case No.:\_\_\_\_\_ SAS No.:\_\_\_\_ SDG No.:\_\_\_\_

Lab File ID (Standard): hd305.d

Date Analyzed: 04/28/04

1 1

, ji

١,

: 1

Instrument ID: HP04629

Time Analyzed: 16:09

| ì  |             | IS1 (DCB) |        | IS2 (NPT) |        | IS3 (ANT) | }      |
|----|-------------|-----------|--------|-----------|--------|-----------|--------|
| i  | •           | AREA #    | RT #   | AREA #    | RT #   | AREA #    | RT#    |
| į  |             | ========  |        | ========= |        |           | =====  |
| i  | 12 HOUR STD | 203029    | 12.539 | 522700    | 16.278 | 353701    | 21.663 |
| į  | UPPER LIMIT | 406058    | 13.039 | 1045400   | 16.778 | 707402    | 22.163 |
| ĺ  | LOWER LIMIT | 101515    | 12.039 | 261350    | 15.778 | 176851    | 21.163 |
| i  | =========   |           | 222222 |           |        |           | ====== |
| į  | EPA SAMPLE  |           |        |           |        |           | !      |
| İ  | NO.         |           |        |           |        |           | ļ      |
| 1  | *******     | ========  | 202225 |           |        |           | ====== |
| 01 | SBLKWE1188  | 194574    | 12.547 | 543438    | 16.274 | 350337    | 21.660 |
| 02 | 118WELCS8   | 195250    | 12.543 | 512504    | 16.281 | 353813    | 21.674 |
| 03 | N4029       | 189477    | 12.535 | 513760    | 16.273 | 334510    | 21.657 |
| 04 | .N4029MS    | 191737    | 12.541 | 525135    | 16.279 |           | 21.672 |
| 05 | N4029MSD    | 189072    | 12.540 | 498669    | 16.278 |           | 21.668 |
| 06 | PPTCL       | 185421    | 12.533 | 489427    | 16.277 | 325023    | 21.663 |
| 07 | PPTCLMS     | 175557    | 12.537 | 463579    | 16.278 | 309382    | 21.667 |
| 08 | TLA         | 191142    | 12.535 | 516854    | 16.272 | 331214    | 21.657 |
| 09 | TLB         | 186588    | 12.535 | 490027    | 16.272 | 307678    | 21.653 |
| 10 | 300MV       | 195196    | 12.537 | 499364    | 16.275 | 342797    | 21.660 |
| 11 | 300NVMS     | 177162    | 12.542 | 471052    | 16.280 | 316826    | 21.663 |
|    |             |           |        | l         |        |           | l      |
|    |             |           |        |           |        |           |        |

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT (advisory) = +100% of internal standard area AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag internal standard are and RT values with an asterisk

\* Values outside of QC limits.

## SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

. :

Lab Name: LANCASTER LABS Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID (Standard): hd305.d Date Analyzed: 04/28/04

Instrument ID: HP04629 Time Analyzed: 16:09

| 1  |                                         | IS4 (PHN)                               |        | ISS (CRY) |                  | IS6 (PRY) | <u> </u> |
|----|-----------------------------------------|-----------------------------------------|--------|-----------|------------------|-----------|----------|
| i  |                                         | AREA #                                  | RT #   | ARÉA #    | RT #             | AREA #    | RT #     |
| i  | ======================================= |                                         |        |           | ======           |           |          |
| i  | 12 HOUR STD                             | 519324                                  | 26.246 | 434978    | 33.163           | 544829    | 38.940   |
| İ  | UPPER LIMIT                             | 1038648                                 | 26.746 | 869956    | 33.663           | 1089658   | 39.440   |
| i  | LOWER LIMIT                             | 259662                                  | 25.746 | 217489    | 32.663           |           | 38.440   |
| İ  | *********                               | ======================================= | *****  |           | aessa <b>s</b> z |           |          |
| İ  | EPA SAMPLE                              | • • • •                                 | '      |           |                  |           |          |
| İ  | NO.                                     |                                         |        |           | !                |           |          |
|    |                                         | 202222222                               | 202222 | *****     |                  | ========  |          |
| 01 | SBLKWE1188                              | 514480                                  | 26.238 | 396735    | 33.142           | 497007    | 38.921   |
| 02 | 118WELCS8                               | 528120                                  | 26.239 | 418781    | 33.161           | 520238    | 38.946   |
| 03 | N4029                                   | 503806                                  | 26.233 | 390045    | 33.136           | 475982    | 38.924   |
| 04 | N4029MS                                 | 519256                                  | 26.237 | 438071    | 33.159           | 522949    | 38.941   |
| 05 | N4029MSD                                | 487647                                  | 26.232 | 396704    | 33.152           | 509924    | 38.936   |
| 06 | PPTCL                                   | 479781                                  | 26.232 | 401649    | 33.131           | 525309    | 38.908   |
| 07 | PPTCLMS                                 | 454183                                  | 26.241 | 364215    | 33.153           | 448413    | 38.938   |
| 08 | TLA                                     | 477923                                  | 26.233 | 380364    | 33.137           | 488408    | 38.917   |
| 09 | TLB                                     | 434133                                  | 26.225 | 371013    | 33.129           | 478344    | 38.908   |
| 10 | 300NV                                   | 506095                                  | 26.226 |           | 33.130           | 509808    | 38.919   |
| 11 | 300NVMS                                 | 466353                                  | 26.237 | 390868    | 33.149           | 498608    | 38.932   |
| 1  |                                         |                                         |        |           |                  |           |          |

IS4 (PHN) = Phenanthrene-d10

ISS (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT (advisory) = +100% of internal standard area

AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag internal standard are and RT values with an asterisk

<sup>\*</sup> Values outside of QC limits.

#### 6B SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

| Lab  | Name:  | Lancaster  | Laboratories  | Contract:            | <del></del> |
|------|--------|------------|---------------|----------------------|-------------|
| Lab  | Code:  | LANCAS     | Case No.:     | SAS No.:             | SOG No.:    |
| Insi | trumen | t ID: HP04 | 629 Calibrati | on Date(s): 04/27/04 | 04/27/04    |

Calibration Times: 08:21

13:10

Min RRF for SPCC(#) = 0.050

Max %RSD for CCC(\*) = 30%

| B FILE ID: RRF5 = RRF50 = hd281.d RRF80 :        | hd284.c<br>= hd283. | d<br>.d      | RRF1      | 15 = hd2<br>120 = ho | 1282.d | nai    | 30 = hc |       | ١,   |        |
|--------------------------------------------------|---------------------|--------------|-----------|----------------------|--------|--------|---------|-------|------|--------|
| KULAn w marating Kulan                           |                     |              |           |                      |        |        |         | 1     | _إ_  | CAL.   |
| COMPOUND                                         | RRF5                | *****        | RRF30     | RRF50                | RRF80  | RRF120 | RRF     | RRF   | RSD  | METHOD |
|                                                  | 22222               | 0.474        | 0.492     | 0.418                | 0.446  | 0.422  |         | 0.447 | 7    | AVG    |
| ,4-Dioxane                                       | 0.432               | 0.904        | 0.906     |                      | 0.893  | 0.830  |         | 0.871 | 4    | AVG    |
| -Hitrosodimethylamine                            | 1.327               | 1.357        | 1,347     |                      | 1.320  | 1.036  |         | 1.269 | 10   | AVG    |
| yridine                                          | 1.248               | 1.262        | 1.262     | 1,190                | 1.169  | 0.971  |         | 1.184 | 9    | AVG    |
| -Picoline                                        | 1.654               |              | 1.680     | 1.729                | 1.589  | 1.559  |         | 1.671 | 6    | AVG    |
| niline                                           | * 1.492             | 1.498        | 1,410     |                      |        | 1.419  |         | 1.455 | 2    | AVG    |
| henol                                            | 1.176               |              |           |                      | 1.215  | 1.126  |         | 1.157 | 4    | AVG    |
| is(2-Chloroethyl)ether                           | 1.051               | 1.078        | 1.032     | 1.060                | 1.085  | 1.034  |         | 1.057 | 2    | AVG    |
| -Chlorophenol                                    | 1.507               |              | 1,485     | 1.483                | 1.475  | 1.456  | 1       | 1.483 | 1    | AVG    |
| ,3-Dichlorobenzene                               | 1.503               |              | 1.507     | 1.546                | 1,543  | 1.491  | 1       | 1.528 | . 2  | AVG    |
| 14 Biblicai andurania                            | 1 0.672             |              |           |                      | 0.695  | 0.653  |         | 0.659 | 5    | AVG    |
| enzyl alcohol                                    | 1.476               |              |           | 1.435                |        |        |         | 1.428 | 3    | AVG    |
| ,2-Dichlorobenzene                               | 0.987               |              |           | 1.011                |        | 0.985  | 1       | 0.992 | 2    | AVG    |
| -Methylphenol                                    | 1.510               |              |           |                      |        | 1.380  | ļ       | 1.434 | 3    | AVG    |
| 2'-oxybis(1-Chloropropane)                       | 1.510               |              | 1-2/11    |                      |        | 1.380  |         | 1.434 | 3    | AVG    |
| is(2-Chloroisopropyl)ether                       | 1.557               | 9            |           |                      |        |        | 1       | 1.508 | 3    | AVG    |
| cetophenone                                      | # 0.988             |              |           |                      |        | 0.950  |         | 0.969 | 3 '  | AVG    |
| -Nitroso-di-n-propylamine                        | 1 0.999             |              |           |                      | 1.009  | 0.997  |         | 1.001 | 3    | AVG    |
| -Methylphenol                                    | 1.546               |              | 1 1 2 2 2 | 1                    |        |        | l       | 1.508 | 4    | AVG    |
| -Toluidine                                       | 0.611               |              | ***       | 1                    | 0.624  | 0.603  | i       | 0.617 | 2    | AVG    |
| exach loroethane                                 | 0.486               |              |           |                      |        | 0.513  | 1       | 0.512 | 3    | AVG    |
| itrobenzene                                      | 0.4835              |              |           |                      | 0.859  | 0.866  |         | 0.862 | 2    | AVG    |
| sophorone                                        | * 0.243             | 21           |           |                      |        | 0.266  |         | 0.259 | 3    | AVG    |
| -Nitrophenol                                     | 1 0.421             |              | 1 7 2     |                      |        | 0.433  | į.      | 0.425 | 2    | AVG    |
| ,4-Dimethylphenol                                | 0.436               |              |           |                      | 0.440  | 0.435  |         | 0.441 | 5    | AVG    |
| is(2-Chloroethoxy)methane                        | 0.207               |              |           |                      | 0.283  |        | 1       | 0.254 | 18   | 1STDE  |
| enzoic acid                                      | + 0.421             |              |           |                      | 0.440  | 0.446  | 1       | 0.440 | 3    | AVG    |
| ,4-Dichlorophenol                                | 1 0.492             |              |           |                      | 0.490  |        |         | 0.493 | 1    | AVG    |
| ,2,4-Trichlorobenzene                            | 0.970               |              |           | 0.941                |        |        |         | 0.955 | 2    | AVG    |
| raph that ene                                    | 0.387               |              |           | 0.426                | 0.408  |        |         | 0.412 | 5    | AVG    |
| -Chloroanilina<br>Jexachlorobutadiene            | 0.145               |              |           | 0.162                | 0.164  |        |         | 0.161 | 4    | AVG    |
|                                                  | 1 0.120             |              |           | 0.129                | 0.124  |        |         | 0.128 | 4    | AVG    |
| Caprolactam<br>G-Chloro-3-methylphenol           | 0.322               |              |           | 0.339                | 0.332  |        |         | 0.334 | 3    | AVG    |
| !-Hethylnaphthalene                              | 1 0.72              |              |           | 0.739                | 0.757  |        |         | 0.744 | 3    | AVG    |
|                                                  | 0.681               |              |           | 0.706                |        |        |         | 0.703 | 2    | AVG    |
| i-Hethylnaphthalene<br>Jexachlorocyclopentadiene | # 0.07              |              |           | 0.162                |        |        |         | 0.139 |      | 1STOE  |
| 2,4,6-Trichlorophenol                            | * 0.357             |              |           |                      |        |        |         | 0.385 | 4    | AVG    |
| 2,4,5-Trichlorophenol                            | 0.39                |              |           |                      |        |        |         | 0.408 |      | AVG    |
| 2,4,5-1ftchtoraphenot<br>Biphenyl                | 1.50                |              |           | 1.420                | 1.490  |        |         | 1.468 |      | AVG    |
| sipnenyt<br>Diphenyt                             | 1.50                |              |           |                      |        |        |         | 1.468 |      | AVG    |
|                                                  | 1.50                |              | 1.48      |                      |        |        |         | 1.468 |      | AVG    |
| 1,1'-Biphenyl<br>2-Chloronaphthalene             | 1.25                | 6 1.26       | 1.24      |                      |        |        |         | 1.245 |      | AVG    |
| ) i byeny i ether<br>S-cutoronapirena cene       | 0.82                |              | 0.83      |                      | 0.82   |        |         | 0.826 |      | AVG    |
| 2-Nitroaniline                                   | 0.38                |              | 0.38      |                      |        | 0.40   |         | 0.395 |      | AVG    |
| imethylphthalate                                 | 1.47                |              |           |                      |        |        |         | 1.469 |      | AVG    |
| 2,6-Dinitrotoluene                               | 0.37                |              |           |                      |        |        |         | 0.389 |      | AVG    |
| Acenaphthylene                                   | 1.60                |              | 4 1.64    |                      |        |        |         | 1.620 |      | AVG    |
| 3-Nitroaniline                                   |                     | 4 I A 77     |           |                      |        |        |         | 0.328 | 1    | AVG    |
| Acenaphthene                                     | 1.06                | 1 1.04       |           |                      |        |        |         | 1.042 | ,, , | 1STD   |
| 2,4-Dinitrophenol                                | # 0.15              | 0.1 <i>1</i> |           |                      |        |        |         | 0.213 | 1 77 | AVG    |
| 4-Nitrophenol                                    | # 0.18              | B 0.22       | 3 0.22    |                      |        |        |         | 0.234 |      | AVG    |
| Dibenzofuran                                     | 1 1.76              |              | 2 1.74    | 4 1.78               | 4 1.71 | 3 1.75 | 1       | 1.737 | 1 6  | 1 743  |
| A 1 Pri 14 A 1 Pri                               | 1                   | 1            | ł         | 1                    |        |        | _       |       | .1   | .      |

melies who

## 6C SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

| Lab Hame: Lancaster Laborat | ories Contract:_     |          |          |
|-----------------------------|----------------------|----------|----------|
| Lab Code: LANCAS Case N     | o.: SAS No.:_        |          | SDG Ho.: |
| Instrument ID: HP04629      | Calibration Date(s): | 04/27/04 | 04/27/04 |
|                             | Calibration Times:   | 08:21    | 13:10    |

Hin RRF for SPCC(#) = 0.050

Max %RSD for CCC(\*) = 30%

| AB FILE ID: RRF5 =<br>RRF50 = hd281.d RRF80 = |       |        |                | 15 = hd<br>120 = h |       | KR     | F30 = h | 0.60sa | ١,       |               |
|-----------------------------------------------|-------|--------|----------------|--------------------|-------|--------|---------|--------|----------|---------------|
| COMPOUND                                      | RRF5  | RRF15  | RRF30          | RRF50              | RRF80 | RRF120 | RRF     | RRF    | X<br>RSD | CAL.<br>METHO |
| 2.4-Dinitrotoluene                            | 0.441 | }      |                | 0.497              | 0.485 | 0.505  |         | 0.478  | 5        | AVG           |
| -Naphthylamine                                | 0.816 |        | 0.870          | 0.921              |       |        |         | 0.860  | 4        | AVG           |
| 2,3,4,6-Tetrachlorophenol                     | 0.193 | 0.225  | 0.229          | 0.240              |       |        |         | 0.228  | 8        | AVG           |
| -Raphthylamine                                | 0.867 | 0.971  | 1.006          |                    |       | 0.964  | 1       | 0.970  |          | AVG           |
| jethylphthalate                               | 1.350 | 1.402  |                | 1.374              |       | 1.366  |         | 1.367  | 1        | AVG           |
| Luprene                                       | 1,294 | 1.317  | 1.310          |                    | 1.301 | 1.321  |         | 1.315  | 1        | AVG           |
| -Chlorophenyl-phenylether                     | 0.471 | 0.501  |                |                    |       |        |         | 0.478  | 3        | AVG           |
| -Nitroaniline                                 | 0.340 | 9.358  |                |                    | 0.350 | 0.369  |         | 0.355  | 3        | AVG           |
| ,6-Dinitro-2-mathylphenol                     | 0.139 |        |                |                    |       | 0.201  |         | 0.172  | - 13     | AVG           |
| -Nitrosediphenylamine (1)                     | 0.656 |        |                | 0.649              |       | 0.641  |         | 0.652  |          | AVG           |
| ,2-Diphenylhydrazine                          | 0.995 |        |                | 0.944              |       | 0.918  |         | 0.955  | 3        | AVG           |
| -Bromophenyl-phenylether                      | 0.210 | 0.198  | 0.192          | 0.196              |       | 0.189  |         | 0.197  | 4        | AVG           |
| exach l orobenzene                            | 0.317 | 0.312  |                | 0.305              | 0.304 | 0.303  |         | 0.308  | 2        | AVG           |
| entachlorophenol '                            | 0.127 | 0.144  |                | 0.169              | 0.173 | 0.185  |         | 0.159  | 13       | AVG           |
| henanthrene                                   | 1.288 | 1.247  | 1.220          | 1.220              | 1.191 | 1.189  |         | 1.226  | 3        | AVG           |
| nthracene                                     | 1.260 | 1.296  | 1.252          | 1.246              | 1.245 | 1.234  |         | 1.256  | 2        | AVG           |
| arbazole                                      | 1.177 | 1.242  |                | 1.246              | 1.237 | 1.223  |         | 1.222  | 2        | AVG           |
| i-n-butylphthalate                            | 1.596 | 1.691  | 1.602          | 1.663              | 1.610 | 1.620  |         | 1.630  | 2        | AVG           |
| Luoranthene                                   | 1.107 | 1.146  |                | 1.146              | 1.130 | 1.095  |         | 1.123  | 2        | AVG           |
| enzidine                                      | 0.780 | 1.011  | 1.068          | 1.089              | 1.017 | 1.022  |         | 0.998  | 11       | AVG           |
| yrene                                         | 1.537 | 1.533  | 1.430          | 1.456              | 1.456 | 1.481  |         | 1.483  | 3        | AVG           |
| utylbenzylphthalate                           | 1.047 | 1.060  | 1.041          | 1.104              | 1.066 | 1.103  |         | 1.070  | 3        | AVG           |
| ,3'-Dichlorobenzidine                         | 0.524 | 0.602  | 0.588          | 0.573              |       | 0.506  |         | 0.558  | 7        | AVG           |
| ,4'-Hethylenebis(2-Chloroanil                 | 0.190 |        | 0.219          | 0.219              |       | 0.188  | 1       | 0.205  | 7        | AVG           |
| enzo(a)anthracene                             | 1.122 | 1.143  | 1.076          | 1.096              | 1.082 | 1.089  | 1       | 1.101  | 2        | AVG           |
| hrysene                                       | 1.088 | 1.093  | 1.061          | 1.032              | 1.016 | 0.998  |         | 1.048  |          | AVG           |
| is(2-Ethylhexyl)phthalate                     | 1.552 | 1.520  | 1.455          | 1.558              | 1.487 | 1.540  |         | 1.519  | 3        | AVG           |
| i-n-octylphthalate                            | 2.059 | 2.022  | 1.885          | 2.169              | 2.045 | 2.221  |         | 2.067  | 6        | AVG<br>AVG    |
| , 12-Dimethylbenz (a) anthracent              | 0.477 | 0.519  | 0.511          | 0.544              | 0.526 | 0.554  |         | 0.522  | 2        | AVG           |
| enzo(b) fluoranthene                          | 1.128 | 1.121  | 1.118          | 1.174              | 1.152 | 1.246  |         | 1.156  | 2        | AVG           |
| enzo(k)fluoranthene                           | 1.112 | 1,119  | 1.080          | 1.112              | 1.026 | 1.007  |         | 1.076  | 2        | AVG           |
| enzo(a)pyrene                                 | 1.025 | 1.061  | 1.074          | 1.048              | 1.053 | 1.292  |         | 1.327  | 8        | AVG           |
| ndeno(1,2,3-cd)pyrene                         | 1.404 | 1.443  | 1.407          | 1.201              | 1.215 |        |         | 1.233  | اة       | AVG           |
| ibenz(a,h)anthracene                          | 1.267 | 1.313  | 1.305          | 1.159<br>1.233     | 1.147 | 1.208  |         | 1.354  |          | AVG           |
| enzo(g,h,i)perylene                           | 1.464 | 1.495  | 1.428          | 1.233              | 1.200 | 22222  |         | 1.334  |          | AVO           |
| ******************                            |       | - 400  | 1.204          | 1.184              | 1.189 | 1.160  |         | 1.193  | 2        | AVG           |
| -Fluorophenol                                 | 1.230 | 1.190  |                | 1.463              | 1.109 | 1.406  |         | 1.412  | 3        | AVG           |
| henot-d5                                      | 1.408 | 1.435  | 1.334          | 1.463              | 1.426 | 1.406  |         | 1.412  | 3        | AVG           |
| henot-d6                                      | 1.408 | 1.435  | 1.334<br>0.504 | 0.508              | 0.508 | 0.502  |         | 0.500  | 2        | AVG           |
| i trobenzene-d5                               | 0.477 |        | 1.386          | 1.378              | 1.412 | 1.352  |         | 1.390  | 2        | AVG           |
| -Fluorobiphenyl                               | 1.406 | 1.405  | 0.293          | 0.304              | 0.299 | 0.313  |         | 0.295  | 5        | AVG           |
| ,4,6-Tribromaphenal                           | 0.272 | 0.895  | 0.843          | 0.304              | 0.830 | 0.846  |         | 0.854  | 3 1      | AVG           |
| erphenyl-d14                                  | 0.838 | עניס.ט | J.043          | 0.074              | 3,000 | 4.070  |         | J      | 1        |               |

<sup>(1)</sup> Cannot be separated from Diphenylamine
4,6-Dinitro-2-methylphenol and 4-Mitrophenol are at 10 ng/ul in the 5 standard.
Benzoic acid, Pentachlorophenol and 2,4-Dinitrophenol are at 15 ng/ul in the 5 standard.
Benzidine Levels in the 5,15,30,50,80,120 standards are 15,45,90,150,240,360 ng/ul, respectively.
Benzoic acid, Pentachlorophenol and 2,4-Dinitrophenol are at 15 ng/ul, 30 ng/ul,40 ng/ul in the 5,15, 30 standards.
page 2 of 2

## 7B SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laboratories Contract:\_\_\_\_

Instrument ID: HP04629 Calibration Date: 04/29/04 Time: 18:59

Lab File ID: hd341.d Init. Calib. Date(s): 04/29/04 04/29/04

Min RRF for SPCC(#) = 0.050

Max %Drift for CCC(\*) = 20%

| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | *************************************** |         |         |          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|---------|----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                       |         | ACTUAL  |          | 8          |
| COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RRF                                     | RRF50   | CONC.   | CONC.    | DRIFT      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ======                                  |         |         | assizaz= | ======     |
| 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.375                                   | ,       | •       | •        | 14         |
| N-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.876                                   | 0.902   | 51.530  |          | 3          |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.316                                   | 1.323   | 50.230  | 50.0     | 0          |
| 2-Picoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.162                                   | 1.254   | 53.980  |          | 8          |
| Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.622                                   | 1.696   | 52.270  | 50.0     | 5          |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.396                                   | 1.393   |         | •        | 0          |
| bis (2-Chloroethyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.127                                   | 1.104   | 48.970  | 50.0     | -2         |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.017                                   | 1.043   | 51.260  | 50.0     | ] 3        |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.467                                   | 1.497   | 51.030  | 50.0     | 2          |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.484                                   | 1.508   | 50.820  | 50.0     | 2          |
| Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.648                                   | 0.674   | 51.980  | 50.0     | 4          |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.409                                   | 1.384   | 49.090  | 50.0     | -2         |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 0.967   |         | 50.0     | -:         |
| 2,2'-oxybis (1-Chloropropane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                       | 1.364   | •       | 50.0     | į -:       |
| bis (2-Chloroisopropyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.407                                   | 1.364   | 48.460  | 50.0     | · -:       |
| Acetophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.497                                   |         | 7       | 50.0     | į :        |
| N-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.957                                   | •       | 49.290  | 50.0     | j -:       |
| 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.975                                   | •       | 50.280  | 50.0     | j :        |
| o-Toluidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 1.527   |         |          | j :        |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 0.635   |         |          | j :        |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 0.537   | •       |          |            |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                       | 0.885   | •       | •        | i :        |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | 0.249   |         | •        | i ·        |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                       | 0.433   | •       | !        |            |
| bis (2-Chloroethoxy) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                       | 0.452   | •       |          | i :        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.158   | •       |          | -:         |
| Benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                       | 0.442   | •       | •        | <b>i</b> . |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.479                                   | :       | !       | :        | i :        |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.932                                   |         | •       | !        | <b>i</b> : |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 0.434   | :       | •        | <b>i</b> : |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.174   | ,       | •        | j :        |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.125                                   | •       |         | •        | <b>i</b> : |
| Caprolactam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.123                                   |         |         |          |            |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.315                                   | :       | :       | •        |            |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.725                                   | •       | !       |          |            |
| 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.143                                   | !       |         |          |            |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0.143                                 | 1 0.101 | 1 30.7% | 1 30.0   |            |

#### 7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP04629 Calibration Date: 04/29/04 Time: 18:59

Lab File ID: hd341.d Init. Calib. Date(s): 04/29/04 04/29/04

Init. Calib. Times(s): 11:20 15:55

Min RRF for SPCC(#) = 0.050

Max \$Drift for CCC(\*) = 20\$

| •                            | ľ     | i     | ACTUAL  | TRUE  | <u> </u> |
|------------------------------|-------|-------|---------|-------|----------|
| COMPOUND                     | RRF   | RRFSO | CONC.   | CONC. | DRIFT    |
|                              |       |       | !       |       | !        |
| * 2,4,6-Trichlorophenol      | 0.358 | 1     | 51.070  | 1     | 2*       |
| 2,4,5-Trichlorophenol        | 0.391 | •     | 7       | •     | 01       |
| Biphenyl                     | 1.436 |       | 51.750  | •     | 4 1      |
| Diphenyl                     | 1.436 | :     |         | •     | 4        |
| 1,1'-Biphenyl                | 1.436 |       | 51.750  | •     | i ai     |
| 2-Chloronaphthalene          | 1.228 |       | •       |       | 3 أ      |
| Diphenyl ether               | 0.805 | 0.815 | 50.570  | 50.0  | 1        |
| 2-Nitroaniline               | 0.387 |       | 50.210  |       | oi       |
| Dimethylphthalate            | 1.448 |       | 51.570  |       | 3        |
| 2,6-Dinitrotoluene           | 0.383 | 0.399 | 52.070  | 50.0  | 4        |
| Acenaphthylene               | 1.734 |       | 51.840  |       | 4        |
| 3-Nitroaniline               | 0.328 | 0.336 | 51.130  | 50.0  | 2        |
| * Acenaphthene               | 1.038 | 1.065 | 51.290  | 50.0  | 3*       |
| # 2,4-Dinitrophenol          | 0.174 |       | 46.880  | 50.0  | -6#      |
| # 4-Nitrophenol              | 0.237 | 0.237 | 49.950  | 50.0  | 0#       |
| Dibenzofuran                 | 1.707 | 1.714 | 50.220  | 50.0  | 0]       |
| 2,4-Dinitrotoluene           | 0.467 | 0.481 | 51.450  | 50.0  | 3        |
| 1-Naphthylamine              | 0.996 | 0.982 | 49.330  | 50.0  | -11      |
| 2,3,4,6-Tetrachlorophenol    | 0.198 | 0.203 | 51.200  | 50.0  | 2        |
| 2-Naphthylamine              | 1.016 | 1.049 | 51.650  | 50.0  | 3        |
| Diethylphthalate             | 1.371 | 1.358 | 49.530  | 50.0  | -1       |
| Fluorene                     | 1.306 | 1.328 | 50.850  | 50.0  | 2        |
| 4-Chlorophenyl-phenylether   | 0.465 | 0.470 | 50.540  | 50.0  | 1        |
| 4-Nitroaniline               | 0.356 | 0.366 | 51.400  | 50.0  | 3        |
| 4,6-Dinitro-2-methylphenol   | 0.160 | 0.168 | 52.460  | 50.0  | <b>Ś</b> |
| * N-Nitrosodiphenylamine (1) | 0.610 |       |         | 50.0  | 4*       |
| 1,2-Diphenylhydrazine        | 0.934 | 0.955 | 51.110  | 50.0  | 2]       |
| 4-Bromophenyl-phenylether    | 0.188 |       | 51.930  |       | 4        |
| Hexachlorobenzene            | 0.303 |       | 52.110  |       | 4        |
| * Pentachlorophenol          | 0.135 |       | 44.840  |       | -10*     |
| Phenanthrene                 | 1.216 |       | 50.780  | :     | 2        |
| Anthracene                   | 1.246 |       | 50.600  |       | 1        |
| Carbazole                    | 1.201 |       | 51.320  |       | 3        |
| Di-n-butylphthalate          | 1.586 |       | 51.760  |       | 4 [      |
| * Fluoranthene               | 1.109 |       |         |       | 3*       |
| Benzidine                    | 0.943 | 1.017 | 161.710 | 150.0 | 8        |
|                              | ll    |       |         |       |          |

<sup>(1)</sup> Cannot be Separated from Diphenylamine

#### 7C cont SEMIVOLATILE CONTINUING CALIBRATION CHECK

| Lab  | Name:  | Lancaster   | Labora | atories    | Cont  | ract:        | <del></del> |  |
|------|--------|-------------|--------|------------|-------|--------------|-------------|--|
| Lab  | Code:  | LANCAS      | Case   | No.:       | SAS   | No.:         | SDG No.:    |  |
| Inst | rument | : ID: HP046 | 529    | Calibratio | on Da | te: 04/29/04 | Time: 18:59 |  |

Init. Calib. Times(s): 11:20 15:55

Min RRF for SPCC(#) = 0.050

Lab File ID: hd341.d

Max %Drift for CCC(\*) = 20%

Init. Calib. Date(s): 04/29/04 04/29/04

|                                |        |        | ACTUAL  | TRUE      | 8       |
|--------------------------------|--------|--------|---------|-----------|---------|
| COMPOUND                       | RRF    | RRF50  | CONC.   | CONC.     | DRIFT   |
|                                | =====  | =====  |         |           | ======= |
| Pyrene                         | 1.404  | 1.362  | 48.510  | 50.0      | -3      |
| Butylbenzylphthalate           | 0.986  | 0.981  | 49.770  | 50.0      | 0       |
| 3,3'-Dichlorobenzidine         | 0.566  | 0.586  | 51.830  | 50.0      | 4       |
| 4,4'-Methylenebis(2-Chloroanil | 0.206  | 0.216  | 52.640  | 50.0      | 5       |
| Benzo (a) anthracene           | 1.074  | 1.076  | 50.090  | 50.0      | 0       |
| Chrysene                       | 1.038  | 1.068  | 51.450  | 50.0      | 3       |
| bis(2-Ethylhexyl)phthalate     | 1.329  | 1.339  | 50.390  | 50.0      | ] 1     |
| Di-n-octylphthalate            | 1.857  | 1.810  | 48.750  | 50.0      | -2      |
| 7,12-Dimethylbenz[a]anthracene | 0.548  | 0.535  | 48.870  | 50.0      | -2      |
| Benzo (b) fluoranthene         | 1.220  | 1.213  | 49.720  | 50.0      | -1      |
| Benzo(k) fluoranthene          | 1.169  | 1.146  | 49.010  | 50.0      | -2      |
| Benzo(a) pyrene                | 1.162  | 1.179  | 50.730  | 50.0      | 1,      |
| Indeno(1,2,3-cd)pyrene         | 1.401  | 1.503  | 53.640  | 50.0      | 7       |
| Dibenz (a, h) anthracene       | 1.301  | 1.358  | 52.220  | 50.0      | 4       |
| Benzo(g,h,i)perylene           | 1.402  | 1.469  | 52.390  | 50.0      | 5       |
|                                | =00=== | 200000 |         |           | ======  |
| 2-Fluorophenol                 | 1.176  | 1.200  | 51.000  | 50.0      | 2       |
| Phenol-d5                      | 1.396  | 1.391  | 49.820  | 50.0      | 0       |
| Phenol-d6                      | 1.396  | 1.391  | 49.820  | 50.0      | 0       |
| Nitrobenzene-d5                | 0.499  | 0.531  | 53.240  | 50.0      | 6       |
| 2-Fluorobiphenyl               | 1.380  | 1.403  | 50.830  | 50.0      | 2       |
| 2,4,6-Tribromophenol           | 0.290  | 0.289  | 49.890  | 50.0      | 0       |
| Terphenyl-d14                  | 0.802  | 0.788  | 49.100  | 50.0      | -2      |
|                                |        |        | ll      | ll        |         |
|                                |        |        | Average | a aDrift: | 3       |

### **APPENDIX A**

# GC VOLATILES DATA DELIVERABLES FORMS

Quality Control Summary SDG# ACO97

Surrogate Recovery Volatiles by GC - Water

| ı | LL         | Sample       | Dilution | 1В4СВ-Н    | I 1B4CB-P  | ITOT       |
|---|------------|--------------|----------|------------|------------|------------|
| ŀ | Sample#    | ) Code       | Factor   | Water-HALL | Water-PID  | OUT        |
| 1 | •          | 1            | i        |            | 1 Recovery | •          |
| 1 |            | .1           | _1       | 1          |            | i          |
| ) | 3533488    | 07549        | 1.0      | 94         | 100        | <u> </u>   |
| ı | 3533489    | 1 07548      | 1.0      | 91         | 100        | 1          |
| 1 | 3533490    | 1 07552      | 20.0     |            | 97         | Ì          |
| 1 | 3533491    | 07553        | ] 100.0  | ]          | 100        | i          |
| 1 | 3533492    | 07554        | 1 200.0  |            | 105        | i          |
| ı | 3533493    | 07555        | 1 50.0   | ]          | 103        | i          |
| ı | 3533494    | 07556        | 1 100.0  | 1          | 102        | İÌ         |
| 1 | 3533495    | 07557        | 1 50.0   |            | 102        | 1 1        |
| - | 3533496    | 07558        | 1 10.0   | Ì          | 102        | i          |
| ı | 3533497    | 07559        | 1 200.0  |            | 103        | 1 i        |
| ı | 3533498    | 1 07560      | 1 10.0   |            | 100        | ii         |
| ı | 3533499    | 07578        | 1 1.0    | 90         | 102        | i          |
| 1 | 3534617    | 07561        | 1.0      | 98         | 101        | , ,<br>I I |
| 1 | 3534618    | 07562        | 1.0      |            | 100        | ii         |
| 1 | 3534619    | 1 07563      | 1 1.0    | 93         | 101        | ii         |
| ı | 3534620MS  | 1 07563      | 1.0      | 116        | 106        | i          |
| 1 | 3534621MSD | 07563        | 1 1.0 1  | 111        | 103        | i          |
| ı | 3534622    | 1 07564      | 1 1.0    | ı          | 102        |            |
| ı | 3534623    | 07579        | 1 1.0    | 95         | 102        | i          |
| ı | 3534624    | 07565        | 1.0      | i          | 100        | i          |
| ı | 3534625    | 1 07566      | 1.0      | i          | 103        | 1          |
| ı | BLK2023    | METHOD BLANK | 1 1.0 (  | 93         | 101        | i          |
| 1 | BLK2024    | METHOD BLANK | 1 1.0    | 96         | 102        | i          |
| į | BLK2025    | METHOD BLANK | 1 1.0    | i          | 102        | Ì          |
| ŧ | BLK2031    | METHOD BLANK | 1 1.0    | i          | 99         | i          |
| 1 | BLK2032    | METHOD BLANK | 1 1.0    | ì          | 100        | i          |
| 1 | LCS2036    | LAB CONTROL  | 1 1.0 1  | 106 į      | 106        | j          |
| ı | LCS2039    | LAB CONTROL  | 1.0      | i          | 102        | i          |
| ı |            | l            | i        | ì          | i .        | i          |

|         |                                          | Control | Limits |
|---------|------------------------------------------|---------|--------|
|         |                                          | Lower   | Upper  |
| 1B4CB-H | = 1-Bromo-4-Chlorobenzene (Water - HALL) | 65      | 134    |
| 184CB-P | = 1-Bromo-4-Chlorobenzene (Water - PID)  | 79      | 126    |

Page 1 of 1



Quality Control Summary SDG# RCS37

Method Blank

Volatiles by GC - Water

Batch Number....: 04099A55A Time.....: 14:06 Matrix..... Water

|           |     | Sample Infor | ma  | tion     |    |       | 1  |
|-----------|-----|--------------|-----|----------|----|-------|----|
| LL        | ī   | Sample       | ī   | Anal     | y. | sis   | ij |
| Sample#   | ı   | Code         | ı   | Date     | 1  | Time  | į  |
|           | _1  |              | _1  |          | ١. |       | _1 |
| LCS5501   | - 1 | LAB CONTROL  | 1   | 04/08/04 | 1  | 15:18 | 1  |
| LDS5501   | -1  | LAB CON DUP  | - 1 | 04/08/04 | ١  | 15:54 | 1  |
| 4246375   | - 1 | M21          | - É | 04/08/04 | ı  | 16:30 | ١  |
| 4249551   | 1   | EOM02        | - 1 | 04/08/04 | ı  | 17:06 | 1  |
| 4249555   | ŀ   | EOM03        | i   | 04/08/04 | ١  | 17:42 | 1  |
| 4249552   | ì   | EOM01        | 1   | 04/08/04 | ŧ  | 18:18 | 1  |
| 4249553   | 1   | EOMO5        | ı   | 04/08/04 | I  | 18:54 | 1  |
| 4249554   | Ì   | EOMO 4       | ı   | 04/08/04 | 1  | 19:30 | -  |
| 4246375MS | - 1 | M21          | ı   | 04/08/04 | 1  | 21:17 | -  |
| 4249552   | Ī   | EOM01        | I   | 04/08/04 | ı  | 23:16 | ı  |
|           | Ĺ   |              | Î   |          | ١  |       | 1  |

|           | Method Blank Res     | ults     |          |          |
|-----------|----------------------|----------|----------|----------|
| CAS       | Compound             | Blank    | 1 LOQ    | MDL      |
| Number    | 1                    | Conc.    | 1        | 1        |
|           | !                    | i (UG/L) | 1 (UG/L) | i (DG/T) |
| 1330-20-7 | TOTAL XYLENES        | ND ND    | ¦3       | . 6      |
| 75-65-0   | 1 TERT-BUTYL ALCOHOL | ND       | 100      | 20       |
| 1634-04-4 | METHYL T-BUTYL ETHER | I ND     | 1        | 1 .3     |
| 71-43-2   | BENZENE              | I ND     | 1        | 1 .2     |
| 108-88-3  | TOLUENE              | l ND     | 1        | 1 .2     |
| 100-41-4  | ETHYLBENZENE         | I ND     | 1 1      | 1 .2     |
|           | <u> </u>             |          | 1        | .l       |

LOQ = Limit of Quantitation; MDL = Method Detection Limit ND = None Detected; \* = Above Limit of Quantitation

Page 1 of 1



Quality Control Summary SDG# RCS37

Matrix Spike Volatiles by GC - Water

Unspiked Sample Number....: 4246375 Spiked Sample Number....: 4246375MS This MS applies to the

Batch Number..... 04099A55A Date..... 04/08/04 Matrix....: Water

following samples: 4249551 4249552 4249553 4249554 4249555

Instrument..... 5890-55

|                                                                                              | Spike  | Sample                                       | MS                                                    | MS                                              | QC                                                                                   |
|----------------------------------------------------------------------------------------------|--------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                              | Added  | Conc                                         | Conc                                                  | %                                               | Limits                                                                               |
|                                                                                              | (UG/L) | (UG/L)                                       | (UG/L)                                                | Recov                                           | Recov                                                                                |
| Compound  TOTAL XYLENES TERT-BUTYL ALCOHOL METHYL T-BUTYL ETHER BENZENE TOLUENE ETHYLBENZENE | 60.0   | 0.00<br>  0.00<br>  0.00<br>  0.00<br>  0.00 | 63.3<br>  532<br>  19.5<br>  21.7<br>  21.3<br>  21.1 | 105<br>  106<br>  97<br>  109<br>  107<br>  105 | 78-130 <br>  78-130 <br>  64-128 <br>  59-148 <br>  67-136 <br>  78-129 <br>  75-133 |

MS=Matrix Spike; ND=None Detected

\* = Recovery outside quality control limits.

Page 1 of 1



Quality Control Summary SDG# RCS37

Lab Control/Lab Control Duplicate Volatiles by GC - Water

Batch Number..... 04099A55A Date..... 04/08/04 Matrix....: Water

This LCS/LDS applies to the following samples: 4249551 4249552 4249553 4249554 4249555

Instrument..... 5890-55

Calibration Date.....: 04/07/04 - 04/08/04(PID) Calibration Date..... 04/07/04 - 04/08/04(FID)

| Compound                                                                                  | Spike   LC<br>  Added   Con<br> (UG/L)  (UG/                                             | c   Conc                                    | LCS<br>  %<br>  Recov                          | LDS<br>  %<br>  Recov                  | LCS  <br>  Limits <br>  Recov                                      | RPD                         | LCS  <br>  Limits  <br>  RPD                       |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| I TOTAL XYLENES ITERT-BUTYL ALCOHOL IMETHYL T-BUTYL ETHER IBENZENE ITOLUENE IETHYLBENZENE | 60.0   60.<br>  500   46<br>  20.0   21.<br>  20.0   20.<br>  20.0   20.<br>  20.0   19. | 8   516<br>1   21.2<br>7   21.0<br>3   20.8 | 101<br>3 94<br>1 106<br>1 103<br>1 101<br>1 99 | 101<br>103<br>106<br>105<br>105<br>104 | 82-120<br>  70-128<br>  75-125<br>  79-123<br>  82-119<br>  81-119 | 0<br>10<br>0<br>2<br>2<br>2 | 30  <br>30  <br>30  <br>30  <br>30  <br>30  <br>30 |

LCS=Lab Control Sample; LOS=Lab Control Sample Duplicate; RPD=Relative Percent Difference

\* = Value outside quality control limits.

Page 1 of 1



#### Quality Control Summary SDG# RCS37 Instrument ID: 5890-55 Initial Calibration Summary

Calibration Batch: 04098A55A
Initial Calibration Date(s): 04/07/04-04/08/04(PID)
Initial Calibration Date(s): 04/07/04-04/08/04(FID)

|           | Sample Informa | ition      |         |  |
|-----------|----------------|------------|---------|--|
| LL        | Sample         | Analysis   |         |  |
| Sample#   | Code           | Date       | Time    |  |
| CHKSTD    |                | 04/08/04   | 12:53   |  |
| BLK5501   | METHOD BLANK   | 04/08/04   | 14:06   |  |
| LCS5501   | LAB CONTROL    | 04/08/04   | 15:18   |  |
| LDS5501   | LAB CON DUP    | 1 04/08/04 | 15:54   |  |
| 1 4246375 | M21            | 04/08/04   | 16:30   |  |
| 4249551   | EOM02          | 04/08/04   | 17:06   |  |
| 1 4249555 | EOM03          | 04/08/04   | 17:42   |  |
| 4249552   | EOM01          | 04/08/04   | 18:18   |  |
| 1 4249553 | EOM05          | 04/08/04   | 18:54   |  |
| 1 4249554 | EOM04          | 04/08/04   | 19:30   |  |
| 4246375MS | M21            | 04/08/04   | 21:17   |  |
| CHKSTD    | 1              | 04/08/04   | 21:53   |  |
| 1 4249552 | EOM01          | 04/08/04   | 23:16   |  |
| CHKSTD    | 1              | 1 04/09/04 | 1 00:28 |  |
| 1         | i              | İ          | ļ       |  |

| STANDARD DATE INJECTED TIME INJECTED                                                                 | LEVEL 1   LEVEL 2   LEVEL 3   LEVEL 4   LEVEL 5   LEVEL 6   LEVEL 7   LEVEL 8    04/07/04  04/07/04  04/07/04  04/07/04  04/07/04  04/07/04  04/08/04  04/08/04     20:28   21:04   21:40   22:16   22:52   23:28   00:04   01:17 |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPOUND (DETECTOR)                                                                                  | Retention Time                                                                                                                                                                                                                    |
| TERT-BUTYL ALCOHOL (FILE METHYL T-BUTYL ETHER (PILE PROBLEM (PILE PILE PILE PILE PILE PILE PILE PILE | 0)   3.630   0.03                                                                                                                                                                                                                 |

### Quality Control Summary SDG# RCS37 Instrument ID: 5890-55 Initial Calibration Summary

Calibration Batch: 04098A55A
Initial Calibration Date(s): 04/07/04-04/08/04(PID)
Initial Calibration Date(s): 04/07/04-04/08/04(FID)

| STANDARD DATE INJECTED TIME INJECTED | LEVEL 1   LEVEL 2   LEVEL 3   LEVEL 4   LEVEL 5   LEVEL 6   LEVEL 7   LEVEL 8   104/07/04   04/07/04   04/07/04   04/07/04   04/07/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08 | <u>國</u>          |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| COMPOUND (DETECTOR)                  | LEVEL 3 Window  LEVEL1  LEVEL2  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVEL3  LEVE | RSD  <br>3  <br>3 |

Page 2 of 2



Quality Control Summary SDG# RCS37

Surrogate Retention Time Summary Volatiles by GC -Water

Initial Calibration Date(s): 04/07/04 - 04/08/04(PID)
Initial Calibration Date(s): 04/07/04 - 04/08/04(FID)

Instrument..... 5890-55

| Trifluor<br>Trifluor                                                                                        | SURROGATE RT FR<br>otoluene (FID)<br>otoluene (PID)                              | OM INITIAL (                                                                                                | Calibrait                                                                                                           | N (Level 3)<br>5.940<br>5.940                                                          |                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                             | Sample Informa                                                                   | tion                                                                                                        | <u> </u>                                                                                                            | RT Sur                                                                                 | mary                                                                                                     |
| LL<br>Sample#                                                                                               | Sample  <br>  Code                                                               | Analy<br>Date                                                                                               | sis  <br>Time                                                                                                       | R.T.<br>TFT-F                                                                          | R.T.                                                                                                     |
| LK5501<br>.CS5501<br>.DS5501<br>.246375<br>.249551<br>.249555<br>.249552<br>.249553<br>.249554<br>.246375MS | METHOD BLANK LAB CONTROL LAB CON DUP M21 EOM02 EOM03 EOM01 EOM05 EOM04 M21 EOM04 | 04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04   04/08/04 | 14:06  <br>15:18  <br>15:54  <br>16:30  <br>17:06  <br>17:42  <br>18:18  <br>18:54  <br>19:30  <br>21:17  <br>23:16 | 5.950<br>5.950<br>5.950<br>5.950<br>5.950<br>5.950<br>5.950<br>5.950<br>5.930<br>5.940 | 5.950<br>  5.950<br>  5.950<br>  5.950<br>  5.950<br>  5.950<br>  5.950<br>  5.950<br>  5.950<br>  5.930 |

TFT-F = Trifluorotoluene (FID) TFT-P = Trifluorotoluene (PID)

Page 1 of 1



Quality Control Summary SDG# RCS37

Check Std. Retention Time Summary Volatiles by GC - Water

Instrument..... 5890-55

Initial Calibration Date(s): 04/07/04 - 04/08/04(PID) Initial Calibration Date(s): 04/07/04 - 04/08/04(FID)

Analysis Date..... 04/08/04 Analysis Time..... 12:53

| LL        | Sample       | Anal       | ysis    |
|-----------|--------------|------------|---------|
| Sample#   | Code         | Date       | Time    |
| 3LK5501   | METHOD BLANK | 04/08/04   | 14:06   |
| LCS5501   | LAB CONTROL  | 04/08/04   | 15:18   |
| LDS5501   | LAB CON DUP  | 04/08/04   | 15:54   |
| 4246375   | M21          | 04/08/04   | 1 16:30 |
| 4249551   | EOM02        | 04/08/04   | 17:06   |
| 4249555   | EOM03        | 04/08/04   | 1 17:42 |
| 4249552   | EOM01        | 1 04/08/04 | 18:18   |
| 4249553   | EOM05        | 04/08/04   | 1 18:54 |
| 4249554   | EOM04        | 04/08/04   | 1 19:30 |
| 4246375MS | M21          | 04/08/04   | 1 21:17 |

| Check Standard Reten                                                               | tion Time Summar                                              | У                                                   |
|------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| Compound                                                                           | Retention  <br>  Time                                         | ID<br>Window                                        |
| TERT-BUTYL ALCOHOL METHYL T-BUTYL ETHER BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES | 3.610<br>  4.130<br>  5.380<br>  6.840<br>  8.270<br>  17.380 | +/-0.03<br>+/-0.03<br>+/-0.03<br>+/-0.03<br>+/-0.03 |

Retention Time and ID Window units are minutes.

Page 1 of 1



#### Quality Control Summary SDG# RCS37

Instrument ID: 5890-55

Beginning Calibration Verification Summary

CCV Batch: 04099A55A

Data File: C:\DEPT25\55099(1).0002.RAW

Date Injected: 04/08/04 Time Injected: 12:53
Initial Calibration Date(s): 04/07/04-04/08/04(PID)
Initial Calibration Date(s): 04/07/04-04/08/04(FID)

|           | Sample Inform | ation           |      |
|-----------|---------------|-----------------|------|
| LL        | Sample        | Analysis        |      |
| Sample#   | [ Code        | Date   Tim      | ne   |
| BLK5501   | METHOD BLANK  | 04/08/04   14:  | : 06 |
| LCS5501   | LAB CONTROL   |                 | :18  |
| LDS5501   | LAB CON DUP   | , ,             | : 54 |
| 4246375   | M21           | ,               | : 30 |
| 4249551   | EOM02         | 1 04/08/04 1 17 | :06  |
| 4249555   | i EOMO3       | 04/08/04   17   | : 42 |
| 4249552   | EOMO1         | 04/08/04   18   | : 18 |
| 1 4249553 | EOM05         | 04/08/04   18   | : 54 |
| 1 4249554 | EOM04         | 1 04/08/04   19 | : 30 |
| 4246375MS | M21           | 04/08/04   21   | :17  |
| i         | i             | 1               |      |

| COMPOUND (DETECTOR   | R)    |    | ieoretical<br>Icentratio | •  | ACTUAL<br>NCENTRATION | G | DRIFT | i<br>I | -   | DRIF<br>IMIT | -   | 1   |
|----------------------|-------|----|--------------------------|----|-----------------------|---|-------|--------|-----|--------------|-----|-----|
|                      |       |    | (UG/L )                  | 1  | (UG/L)                |   |       | ļ      |     |              |     | 1   |
| TERT-BUTYL ALCOHOL   | (FID) | -¦ | 200.0                    | -¦ | 205.3                 |   | 3     | -¦-    | -25 | to           | +25 | -¦  |
| METHYL T-BUTYL ETHER | (PID) | i  | 20.0                     | i  | 21.2                  | i | 6     | 1      | -15 | to           | +15 | ı   |
| BENZENE              | (PID) | i  | 20.0                     | i  | 20.5                  | l | 3     | 1      | -15 | to           | +15 | - 1 |
| SURR-TFT-P           | (PID) | į  | 30.0                     | í  | 30.2                  | 1 | 1     | 1      | -43 | to           | +46 | i   |
| SURR-TFT-F           | (FID) | •  | 30.0                     | i  | 29.9                  | ļ | 0     | 1      | -34 | to           | +36 | 1   |
| TOLUENE              | (PID) | i  | 20.0                     | i  | 20.1                  | ı | 1     | 1      | -15 | to           | +15 | 1   |
| ETHYLBENZENE         | (PID) | i  | 20.0                     | i  | 19.9                  | 1 | -1    | 1      | -15 | to           | +15 | - 1 |
| M. P-XYLENE          | (PID) | i. | 40.0                     | i  | 40.2                  | ı | 0     | ı      | -15 | to           | +15 | ı   |
| O-XYLENE             | (PID) | i  | 20.0                     | i  | 20.1                  | İ | 0     | 1      | -15 | to           | +15 | 1   |



#### Quality Control Summary SDG# RCS37 Instrument ID: 5890-55 Ending Calibration Verification Summary

CCV Batch: 04099A55A
Data File: C:\DEPT25\55099B.0019.RAW
Date Injected: 04/09/04 Time Injected: 00:28
Initial Calibration Date(s): 04/07/04-04/08/04(FID)

|               | Sample Infor     | mation   |                |
|---------------|------------------|----------|----------------|
| LL<br>Sample# | Sample<br>  Code | Anal     | ysis<br>  Time |
| 4249552       | EOM01            | 04/08/04 | 23:16          |

| COMPOUND (DETECTOR)   |              | THEORETICAL<br> CONCENTRATION<br>  (UG/L ) | ACTUAL  <br> CONCENTRATION <br>  (UG/L ) | 8 | DRIFT   | 1               | •          | DRIF<br>IMIT | _          | -<br> <br> <br> |
|-----------------------|--------------|--------------------------------------------|------------------------------------------|---|---------|-----------------|------------|--------------|------------|-----------------|
| ITEMS DOLLES IMPORTED | FID)<br>FID) | 200.0                                      | 216.0                                    |   | 8<br>-2 | - i-<br> <br> - | -25<br>-43 | to<br>to     | +25<br>+46 | -i<br>-i<br>-i  |

Page 1 of 1

# **APPENDIX A**

# PESTICIDES/PCBs DATA DELIVERABLES FORMS

## 2E WATER SURROGATE RECOVERY

Lab Name: Lancaster Laboratories

Contract

Lab Code:

Case No.:

SAS No:

SDG No.: GGT01

GC Column (1): RTXCLP

ID: .32

GC Column (2): RTXCLPII

ID: .32

| SAMPLE        | SAMPLE<br>CODE NO. | TCX 1<br>% REC # | TCX 2<br>% REC # | DCB 1<br>% REC # | DCB 2<br>% REC # | דסד<br>סטד |
|---------------|--------------------|------------------|------------------|------------------|------------------|------------|
|               | F-GT1              | 77               | 80               | 68               | 69               | 0          |
| 267599        | F-GT2              | 76               | 79               | 63               | 64               | 0          |
| 4267601       | F-GT3              | 80               | 83               | 81               | 82               | 0          |
| 4267603       | FGTDP              | 77               | 80               | 67               | 69               | 0          |
| 4267605       | PBLKX6             | 70               | 71               | 70               | 71               | 0          |
| BLANKA        | LCSMB              | 71               | 74               | 79               | 81               | 0          |
| LCSA<br>LCSDA | LCSDF8             | 69               | 71               | 76               | 78               | 0          |

ADVISORY QC LIMITS

NOMINAL CONCENTRATION

0.151

(43 - 122) (13 - 130)

0.149

ug/L ug/L

# Column to be used to flag recovery values

= Tetrachloro-m-xylene = Decachlorobiphenyl

\* Values ourside of QC Limits

D Surrogate diluted out

TCX

DCB

Page 1 of 1

FORM II - 1

## 3E Water Lab Control Spike/Lab Control Spike Duplicate Recovery

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

Case No.:

SAS No.:

SDG No.:

Laboratory Control Spike - Sample Code No.: LCSM8

|                     | Spike<br>- Added | LCS<br>Concen | LCSD<br>Concen | LCS<br>%<br>Rec# | LCSD<br>%<br>Rec # | LCS-LCSD<br>% REC<br>Limits | %<br>RPD<br># | %<br>RPD<br>Lim |
|---------------------|------------------|---------------|----------------|------------------|--------------------|-----------------------------|---------------|-----------------|
| Compound            | (ug/l)           | (ug/l)        | (ug/l)         | 110              |                    | (56 - 122)                  |               | 20              |
| alpha-BHC           | 0.10             | 0.11          | ·              |                  |                    | (65 - 144)                  |               | 20              |
| gamma-BHC (Lindane) | 0.10             | 0.10          | <del>,</del>   | 100              |                    |                             |               | 20              |
| osta-BHC            | 0.10             | 0.11          |                | 110              |                    | (64 - 143)                  |               |                 |
| delta-BHC           | 0.10             | 0.11          |                | 110              |                    | (41 - 155)                  |               | 20              |
| Heptachlor          | 0.10             | 0.072         |                | 72               | <u> </u>           | (45 - 130)                  |               | 20              |
| Aldrin              | 0.100            | 0.047         |                | 47               |                    | (47 - 122)                  |               | 20              |
| Heplachior epoxide  | 0.10             | 0.11          |                | 110              |                    | (73 - 141)                  |               | 20              |
| pamma-Chlordana     | 0.097            | 0.097         |                | 100              |                    | (52 - 153)                  |               | 30              |
| alpha-Chlordane     | 0.099            | 0.094         |                | 95               |                    | (62 - 135)                  |               | 30              |
| 4.4'-DDE            | 0.20             |               |                | 90               | 1                  | (44 - 154)                  |               | 20              |
|                     | 0.10             | <u> </u>      |                | 110              | 1                  | (66 - 131)                  |               | 20              |
| Endosullan I        |                  |               |                | 100              | -                  | (71 - 129)                  |               | 20              |
| Dieldrin            | 0.20             |               |                | 100              | <del> </del>       | (62 - 135)                  |               | 20              |
| Endrin              | 0.20             |               |                | 90               | -                  | (42 - 155)                  |               | 20              |
| 4,4'-DDD            | 0.21             |               |                |                  | <del> </del>       |                             | -             | 20              |
| Endosulian II       | 0.21             |               |                | 105              | <del> </del>       | (61 - 141)                  |               | 20              |
| 4,4'-DDT            | 0.20             | 0.20          | <u> </u>       | 100              | <del></del>        | (47 - 159)                  | _             | 2               |
| Endrin äldehyde     | 0.20             | 0.1           | 8              | 90               | 1                  | (36 - 158                   |               |                 |
| Methoxychlor        | 1.0              | 0.9           | 4              | 94               |                    | (49 - 155                   |               | 2               |
| Endosulfan sulfate  | 0.2              | 1 0.2         | 2              | 105              | 1                  | (56 - 140                   | )             | 2               |
| Endrin kelane       | 0.2              |               | 1              | 100              |                    | (61 - 139                   | )             | 3               |

# Column to be used to flag recovery and RPD values with an asterisk

Values outside of QC limits

RPD: 0 out of 20 outside limits

Spike Recovery: 0 out of 20 outside limits

Comments:

Results calculated on as-received basis.

Sample No.: LCSA

Batch: 041270023A

#### 10

## ORGANICS ANALYSIS DATA SHEET

SAMPLE CODE NO.

PBLKX3

Lab Name: Lancaster Laboratories

Contract:

Case No.:

SAS No.:

SDG No.:

Matrix: (soll/water) WATER

Lab Sample ID: BLANKA

Sample wt/vol:

1000 (g/ml) ml

Lab File ID: 3C13120.37R

% Moisture:

Lab Code:

Decanted: (Y/N)

Date Received:

Extraction: (SepF/Cont/Sonc) SEPF

Date Extracted: 5/7/04

Concentrated Extract Volume:

Date Analyzed: 5/7/04

Injection Volume:

10000 (uL) 2 (uL)

Dilution Factor: 1

GPC Cleanup: (Y/N) N

pH:

Sulfur Cleanup: (Y/N) N

## CONCENTRATION UNITS

| CAS NO.    | COMPOUND            | (UG/L or UG/KG) <u>ug/l</u> | Q                   |
|------------|---------------------|-----------------------------|---------------------|
| 319-84-6   | alpha-BHC           |                             | 0.0020              |
| 58-89-9    | gamma-BHC (Lindane) |                             | 0.0020U             |
| 319-85-7   | bela-BHC            |                             | 0.012U              |
| 319-86-8   | delta-BHC           |                             | 0.0052JP            |
| 76-44-8    | Heptachlor          |                             | 0.0020U             |
| 309-00-2   | Aldrin              |                             | 0.0054UP            |
| 1024-57-3  | Heptachlor epoxide  |                             | 0.0020U             |
| 5103-74-2  | gamma-Chlordane     |                             | 0.0079UP            |
| 5103-71-9  | alpha-Chlordane     |                             | 0.0020U             |
| 72-55-9    | 4.4'-DDE            |                             | 0.0040 U            |
| 959-98-8   | Endosulfan I        |                             | 0.0040 <u>U</u>     |
| 60-57-1    | Dieldrin            |                             | 0.0050U             |
| 72-20-8    | Endrin              |                             | 0.0040U             |
| 72-54-8    | 4,4'-DDD            |                             | 0.0040U             |
| 33213-65-9 | Endosulfan II       |                             | 0.0050U             |
| 50-29-3    | 4.4'-DDT            |                             | 0.0040U             |
| 7421-93-4  | Endrin aldehyda     |                             | 0.020U              |
| 72-43-5    | Methoxychlor        |                             | 0.060 U             |
| 1031-07-8  | Endosulfan sulfate  |                             | 0.0090U             |
| 53494-70-5 | Endrin ketone       |                             | 0.0040U             |
| 12674-11-2 | Aroclor-1016        |                             | 0.20U               |
| 11104-28-2 | Araclor-1221        |                             | 0.40 <del> </del> U |
| 11141-16-5 | Arador-1232         |                             | 0.10 U              |
| 53469-21-9 | Aroclor-1242        |                             | 0,20U               |
| 12672-29-6 | Aroclor-1248        |                             | 0.30U               |
| 11097-69-1 | Aroclor-1254        |                             | 0.20U               |
| 11096-82-5 | Aroclor-1260        |                             | 0.30U               |
| 8001-35-2  | Toxaphene           |                             | 0.30U               |

4C

#### METHOD BLANK SUMMARY

SAMPLE CODE NO. PBLKX3

Lab File ID: 3C13120.37R 3C13120B.37R

Lab Name: Lancaster Laboratories

Contract:

SDG No.: GGT01

Lab Code:

Case No.:

SAS No .:

Extraction: (SepF/ConVSonc) SEPF

Lab Sample ID BLANKA

Matrix: (soli/water) WATER

Sulfur Cleanup: (Y/N) N

Date Analyzed (1): 5/7/04

Time Analyzed (1): 21:01:21

Instrument ID (1): H6722A

Time Analyzed (2): 21:01:21

Instrument ID (2): H6722B

Date Analyzed (2): 5/7/04

Date Extracted: 5/7/04

GC Column: RTX-CLP

ID: 0.32 (mm)

GC Column: RTXCLPII

ID: 0.32 (mm)

# THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD

| •        | SAMPLE<br>CODE NO. | LAB SAMPLEID | DATE<br>ANALYZED 1 | DATE<br>ANALYZED 2 |
|----------|--------------------|--------------|--------------------|--------------------|
| Λ4       | GT-1               | 4267595      | 5/7/04             | 5/7/04             |
| 01<br>02 | GT1MS              | 4267596      | 5/7/04             | 5/7/04             |
| 03       | GT-1MSD            | 4267597      | 5/7/04             | 5/7/04             |
| 04       | GT-2               | 4267600      | 5/7/04             | 5/7/04             |
| 05       | GT-3               | 4267602      | 5/7/04             | 5/7/04<br>5/7/04   |
| 06       | GTDP3              | 4267604      | 5/7/04             | 5/7/04             |
| 07       | PBLKX3             | BLANKA       | 5/7/04<br>5/7/04   | 5/7/04             |
| 08       | LCSM8              | LCSA         | 3/1/04             |                    |

| COMMENTS: |  |
|-----------|--|
|           |  |

Page 1 of 1

FORM IV

## 6D INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

Case No.:

SAS No.:

SDG No.:

Calibration File: 1C13120

Instrument: H6722A

GC Column (1): RTX-CLP

ID: 0.32 (mm)

Update File:

Date(s) Analyzed: 4/30/04

|                     |         | RTC      | F STANDA | RD\$     |         | MIDPOINT | RT WINDOW |          |
|---------------------|---------|----------|----------|----------|---------|----------|-----------|----------|
| COMPOUND            | LEVEL 1 | LEVEL 2  | LEVEL 3  | LEVEL 4  | LEVEL 5 | RT       | FROM      | то       |
| etrachioro-m-xylene | 4,53    | 4.53     | 4.53     | 4.53     | 4.53    | 4,53     | 4,50      | 4.56     |
|                     | 5,12    | 5,12     | 5,12     | 5.12     | 5.12    | 5.12     | 5.09      | 5.15     |
| cb                  | 5.36    | 5.37     | 5.38     | 5.38     | 5.38    | 5,38     | 5.35      | 5.41     |
| pha-BHC             | 5.85    | 5.85     | 5.85     | 5.85     | 5.85    | 5,85     | 5.82      | 5.86     |
| amma-BHC (Lindane)  | 5.97    | 5.97     | 5.97     | 5.97     | 5.97    | 5.97     | 5.94      | 6.00     |
| sta-BHC             | 6.23    | 6.23     | 6.24     | 6.24     | 6.24    | 6.24     | 8.21      | 6.27     |
| ella-BHC            | 6.53    | 6.53     |          | 6.53     | 6.53    | 6.53     | 6.50      | 6,56     |
| leptachlor          | 6.96    | 6.96     |          |          |         | 6.96     | 6.93      | 6.99     |
| Vidrin              | 7.26    | 7.26     |          |          |         |          | 7.23      | 7.29     |
| elodrin .           | 7.75    |          |          |          |         |          | 7.72      | 7.78     |
| p.p-DDE             |         |          |          |          |         |          | 7.77      | 7.83     |
| teplachior epoxide  | 7,80    |          |          |          |         |          |           | 7.99     |
| gamma-Chlordane     | 7.96    |          |          |          |         | <u> </u> | 8.11      | 8.17     |
| alpha-Chlordans     | 8.14    | 8,14     |          |          |         |          |           | 8.24     |
| 4,4'-DDE            | 8.21    | <u> </u> |          | 1        |         |          |           | 8.37     |
| Endosyllan I        | B.34    |          |          | 4        | 1       |          |           | 8.4      |
| 0,p-000             | 8.45    |          |          |          |         |          |           | 8,6      |
| Oleidrin            | 8.6     |          |          | <u> </u> |         |          | 1         |          |
| 0,p-DDT             | 8.71    |          |          |          |         |          |           | 9.0      |
| Endrin              | 6.9     |          |          |          |         |          |           | 9.0      |
| 4,4'-DDD            | 9.0     |          |          |          |         |          |           |          |
| Kepone              | 9.0     |          |          |          |         |          |           |          |
| Endosulfan II       | 9.2     |          |          | _        |         |          |           |          |
| 4,4'-DDT            | 9.3     |          |          |          |         |          |           | <u> </u> |
| Endrin aldehyde     | 9.8     | 2 9.8    |          |          |         | 82 9.8   |           |          |
| Methoxychlor        | 9.9     |          |          |          |         | 97 9.9   |           |          |
| Mirex               | 10.2    | 10.5     |          |          |         |          |           |          |
| Endosulfan sulfate  | 10.3    | 10.      |          |          |         |          |           |          |
| Endrin kelone       | 10.7    | 7 10.    | 77 10.   |          |         |          |           |          |
| Decachlorobiphenyl  | 12.1    | 16 12.   | 15 12.   | 15 12.   | 15 12   | 15 12    | 15 12.1   | 12.      |

## 6E INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

Case No.:

SAS No.:

SDG No.:

Instrument: H6722A

Calibration File: 1C13120

GC Column (1): RTX-CLP

ID: 0.32 (mm)

Date(s) Analyzed: 4/30/04

4/30/04

|                     |          | 1         | CALIBRAT  | ION FACTO |           | l          |      |
|---------------------|----------|-----------|-----------|-----------|-----------|------------|------|
| COMPOUND            | LEVEL 1  | LEVEL 2   | LEVEL 3   | LEVEL4    | LEVEL 5   | MEAN       | %RSD |
| etrachioro-m-xylene | 3.87E+03 | 3.82E+03  | 3.71E+03  |           | 3.56E+03  | 3.72E+03   | 3.3  |
| cb                  | 6.84E+03 | 6.49E+03  | 6.53E+03  | 6.21E+03  | 5.77E+03  | 6.37E+03   | 6,   |
| pha-BHC             | 4.20E+03 | 4.50E+03  | 4.67E+03  | 4.83E+03  | 4.94E+03  | 4.63E+03   | 8.   |
| amma-BHC (Lindane)  | 4.38E+03 | 4,55E+03  | 4.85E+03  |           |           | 4.63E+03   | 3.8  |
| eta-BHC             | 2.46E+03 | 2.55E+03  | 2.48E+03  |           |           | 2.48E+03   | 1.1  |
| etta-BHC            | 4.12E+03 | 4,34E+03  | 4,512+03  |           | 4.59E+03  | 4.45E+03   | 5.3  |
| leptachlor          | 4.95E+03 | 5,03E+03  | 4,96E+D3  |           |           | 4.95€+03   | 1.0  |
| Adrin               | 3.88E+03 | 3.90E+03  | 3,91E+03  |           |           |            | 1,   |
| relodrin            | 4.40E+03 | 4.10E+03  | 4,17E+0   |           |           | 4.09E+03   | 5.   |
| p-DDE               | 2.77E+03 | 2.55E+03  | 2.61E+0   | 2.54E+03  |           |            | 4.   |
| Replachtor epoxide  | 4.13E+03 | 4.05E+03  | 3,95E+0   | 3.90E+03  | 3.89€+03  |            | 2,   |
| ramma-Chlordane     | 3.93E+03 | 3.95E+03  | 3.86E+0   | 3.87E+0   | 3.84E+03  |            | 1.   |
|                     | 5.53E+0  |           | 4.08E+0   | 3.99E+0   | 3.93E+03  |            | 15.  |
| alpha-Chiordane     | 3.57E+0  |           | 3.56E+0   | 3,59E+0   | 3.64E+03  |            |      |
| 4,4'-ODE            | 3.71E+0  |           | 3.62E+0   | 3 3.57E+0 | 3.55E+03  |            | 1    |
| Endosulfan I        | 2.30E+0  | 2.18E+00  | 2.24E+0   | 3 2.18€+0 | 2.15E+03  |            | 2    |
| o,p-000             | 3,59E+0  | 3.57E+0   | 3.59E+0   | 3.61E+0   | 3.62E+0   |            |      |
| Dieldrin            | 3.12E+0  |           | 2.73E+0   | 3 2.66E+0 | 3 2.58E+0 |            | 7    |
| o.p-DDT             | 3.21E+0  |           | 3.27E+0   | 3.25=+0   | 3 3.26E+0 | 3 3.25E+03 |      |
| Endrin              | 3.33€+0  |           | 3.40E+0   | 3.41E+0   | 3.47E+0   | 3 3.39E+03 | 1    |
| 4,4'-DDD            | 1.97E+0  |           | 2 3.58E+0 | 2 2.57E+0 | 2 3.44E+0 | 2 2.89E+02 | 27   |
| Kepone              | 3.38E+0  |           |           | 3.27E+0   | 3.22E+0   | 3 3.32E+03 |      |
| Endosulian II       | 3.115+   |           |           |           |           | 3 3.10E+03 |      |
| 4,4'-DDT            | 2.852+   |           |           |           |           | 3 2.71E+03 |      |
| Endrin aldehyde     | 2.035+   |           |           |           |           | 3 1.80E+03 |      |
| Melhoxychior        | 3.21E+   |           |           |           |           | 3 2.79E+03 | 1    |
| Mirex               |          |           |           |           |           |            |      |
| Endosulfan sulfale  | 3.37E+   |           |           |           |           |            |      |
| Endrin ketone       | 3.75E+   |           |           |           |           |            |      |
| Decachlorobiphenyl  | 4.06E+   | 03 3.72E+ | ימן מיים  | 00 0'E0E. |           | P % RSD:   | 5    |

Average % RSD:

6F INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Lab Name: Lancaster Laboratories Case No.: Contract:

Lab Code:

SAS No.:

Calibration File: 1C13120

SDG No.:

Instrument: H6722A

Date(s) Analyzed: 4/30/04

4/30/04

GC Column (1): RTX-CLP

ID: 0.32 (mm)

|              |          |          | RT WIN   |      | CALIBRATION |       | AMOUNT (ng) | PEAK<br>HEIGHT  | %RSD          |
|--------------|----------|----------|----------|------|-------------|-------|-------------|-----------------|---------------|
| COMPOUND     | PEAK     | RT       | FROM     | . 10 | FACTOR      | LEVEL |             |                 | % <b>до</b> 0 |
| eter-1016    | 1        | 5.06     | 5.03     | 5.09 | 78          | 1     | 50          |                 | 0.0           |
| 100-1010     | 1 1      | İ        | Į.       | •    |             | 2     | 100         |                 |               |
| •            | 1 1      | j        | 1        |      |             | 3     | 1 200       |                 |               |
|              | 1 1      | 1        | - 1      |      |             | 4     | 500         |                 |               |
|              |          | 1        | l        |      | 1           | 5     | 1000        | 1 l             | 11.           |
|              | 2        | 5.55     | 5.55     | 5.6  | 131         | 1     | 50          |                 | 11,           |
|              | 1 1      | 1        |          |      | Į           | 2     | 100         | 1 1             |               |
|              | - I I    | 1        | I        |      | į           | 3     | 200         | 1 1             |               |
|              |          |          |          |      | 1           | 4     | 50          | 7 t             |               |
| •            | į į      |          |          |      | i           | 5     | 100         |                 | 9             |
|              | 3        | 6.24     | 6.21     | 6.2  | 7 221       | ] 1   | 5           |                 | 9             |
|              |          |          |          |      |             | 2     | 10          | •               |               |
|              |          |          |          |      | }           | 3     | 20          |                 |               |
|              | l i      |          |          | ľ    | 1           | 4     | 50          |                 |               |
|              | ļ.       | <b>\</b> | İ        |      | 1           | 5     | 100         | 1               | _             |
|              | 4        | 6.43     | 5.40     | 6.4  | je 121      | 1     | l .         | 6616            | 9             |
|              |          |          |          | Ì    | ì           | 2     | 10          | 1               |               |
|              |          | 1        | 1        | 1    | 1           | 3     | 20          |                 | 1             |
|              |          | 1        | l        | l    | 1           | 4     | 50          |                 | l             |
|              |          | 1        | 1        | l    | 1           | 5     | 101         |                 |               |
|              | 5        | 6.7      | 6.6      | 8.   | 74 9        | 1     | 1           | 50 5082         | 11            |
|              | 1        | 1        |          | 1    | I           | 2     | 1           | od 9575         | 1             |
|              | Ì        | 1        | 1        | 1    | 1           | 3     | 1 -         | od 18519        | }             |
|              | 1        | 1        | 1        | 1    | İ           | 4     | 1 -         | 0d 42107        | Ì             |
|              | ì        | i        | <b>\</b> | į.   | 1           | 5     |             | od 77440        |               |
|              | 1 6      | 6.9      | 6.9      | 5 7  | .01 10      | 1 1   | 1           | sd 5554         | 1             |
|              |          |          | 1        | 1    | 1           | 2     | · •         | 00 10562        | 1             |
|              |          | 1        | 1        | 1.   | 1           | 3     |             | od 2067:        | 1             |
|              |          | 1        | 1        | 1    | ]           | 4     |             | sod 4765        |               |
| ļ            | <u> </u> | 1        | į        | 1    | 1           |       | ; 1         | 100 B832        |               |
|              |          | 4.3      | 77 4.3   | 14 4 | .80         | (9)   | • 1         | 20d 971         |               |
| Aracior-1221 | 2        | 4.5      |          | 1    | 1.02        | 27    |             | 20 <b>0 541</b> | 1             |
| <b>}</b>     | 3        | 5.       |          |      |             | 13    | ,           | 20d 2253        |               |
|              |          |          | -        |      |             | 87    | 1           | 200 1746        |               |
| Arociar-1232 | 2        | 1        | - 7      | • •  |             | 58    | 1           | 200 1161        | ٠.            |
|              | 3        | 3        |          |      |             | 99    | 1           | 200 1974        | 4             |
|              | 1 -      |          | - 1      |      | 2           | 55    | 1           | 200 1109        | 1             |
|              | 4        | _        |          | ~~   | 6.74        | 37    | 1           | 20d 735         | 1             |
| 1            | 5        | 1        | 1        | ~-1  | 7.01        | 44    | 1           | 20d 87          | :s l          |

## **7**D CALIBRATION VERIFICATION SUMMARY

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

Case No.:

SAS No .:

SDG No.:

Instrument: H6722A

ID: .32 (mm)

Init. Callb Date(s): 05/07/04

05/07/04

GC Column (1): RTX-CLP

Date Analyzed: 05/07/04

Lab File ID: 3C13120.34R

Time Analyzed: 20:00

Lab Standard ID: PEMAQ

Initial Calibration: 6C13120

| COMPOUND             | RT      | RT WIND | TO OT   | CALC<br>AMOUNT<br>(ng/ml) | MOM<br>TOUNT<br>(mg/ml) | 55D   |
|----------------------|---------|---------|---------|---------------------------|-------------------------|-------|
|                      | 4.50    | 4.47    | 4.53    | 21:74                     | 20.10                   | 8.1   |
| Tetrachloro-m-xylene | 5.35    |         | 5.38    | 10.86                     | 10.00                   | 8.6   |
| alpha-BHC            | 5.82    |         | 5.85    | 10.16                     | 10.00                   | 1.6   |
| gamma-BHC (Lindane)  |         |         | 5.98    | 11.07                     | 10.00                   | 10.7  |
| beta-BHC             | 5.94    |         |         | 0.41                      |                         |       |
| 4,4'-DDE             | 8.18    |         | 8.22    |                           | 50.10                   | -3.8  |
| Endrin               | 8.94    |         | 8.97    | 48.19                     | 100.20                  |       |
| 4,4'-DDT -           | 9,34    |         | 9.37    | 93.63                     | 100.20                  | -0.0  |
| Endrin aldehyde      | 9.79    | 9.76    | 9.82    | 1.08                      |                         |       |
|                      | 9.94    |         | 9.97    | 209.53                    | 250.50                  | -16.4 |
| Methoxychlor         | 10.74   |         | 10.77   | 1,57                      |                         |       |
| Endrin kelone        | - 12.11 |         |         | 21,11                     | 20.00                   | 5.    |
| Decachlorobiphenyl   | 12.1    | 1 12.00 | - 44.17 |                           | nekdower 5 7            |       |

· 4'4-DDT % breakdown:0.5

Endrin % breakdown: 5.2

Combined % breakdown: 5.7

## 7E CALIBRATION VERIFICATION SUMMARY

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

Case No.:

SAS No.:

SDG No.:

Init. Calib Date(s): 04/30/04

04/30/04

Instrument: H6722A

Date Analyzed: 04/30/04

GC Column (1): RTX-CLP

(D: .32 (mm)

Time Analyzed: 15:26

Lab File ID: 1C13120.17R Lab Standard ID: ICMAXAA

Initial Calibration: 1C13120

| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | <del></del> | RT WINE | woo  | CALC                                                                                                            | NOM               |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|------|-----------------------------------------------------------------------------------------------------------------|-------------------|------|
| COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT          | FROM    | то   | AMOUNT<br>(ng/ml)                                                                                               | AMOUNT<br>(imlgn) | %D   |
| Fetrachloro-m-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.53        | 4.50    | 4.56 | 39.06                                                                                                           | 38.48             | 1.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.38        | 5.35    | 5.41 | 9.87                                                                                                            | 10,00             | -1.3 |
| alpha-BHC<br>gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.85        | 5.82    | 5.88 | 9.96                                                                                                            | 10.00             | -0.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.97        | 5.94    | 6.00 |                                                                                                                 | 10.00             | 4.2  |
| pela-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.23        |         | 6.27 | 10.38                                                                                                           | 10.00             | 3.8  |
| della-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.53        |         | 6.56 | 10.06                                                                                                           | 10.00             | 0.6  |
| Heptachior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.96        |         | 6.99 |                                                                                                                 | 10.00             | 4.8  |
| Aldrin .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.80        |         | 7.83 | 10.32                                                                                                           | 10.00             | 3.2  |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.96        |         |      |                                                                                                                 | 10.00             | 1.5  |
| gamma-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.14        | -       | 8.17 |                                                                                                                 | 10.00             | -4.9 |
| alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 8.2       |         |      |                                                                                                                 | 20.00             | -0.  |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.34        |         | 8.37 |                                                                                                                 | 10.00             | 0.   |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |         |      |                                                                                                                 | 20.00             | -1.  |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.6         |         |      |                                                                                                                 | 20.00             |      |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.9         |         |      |                                                                                                                 | 20.00             | 3.   |
| 4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0         |         |      |                                                                                                                 | 20.00             |      |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.2         |         |      |                                                                                                                 | 20.00             |      |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.3         |         |      |                                                                                                                 | 20.00             |      |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.8         |         |      |                                                                                                                 | 100.00            |      |
| Melhoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.9         |         |      |                                                                                                                 |                   |      |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3        |         |      |                                                                                                                 |                   |      |
| Endrin kelone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.7        |         |      | The second second second second second second second second second second second second second second second se |                   |      |
| Decachiorobiphenyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.1        | 5 12.1  | 12.1 | 8 37.23                                                                                                         | Average of %D     |      |

## 8D **ANALYTICAL SEQUENCE**

Sequence: 1C13120

Lab Name: Lancaster laboratories

Contract:

Lab Code:

Case No.:

SAS No:

SDG No.:

GC Column: RTX-CLP

ID: 0.32

Instrument: H6722A

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

| ſ   | Sample<br>Code No. | Lab<br>Sample ID | Date<br>Analyzed | Time<br>Analyzed | Calibration<br>File | TCX  | DCB   |
|-----|--------------------|------------------|------------------|------------------|---------------------|------|-------|
| 100 | PIBLKAA            | TBLKX0424A       | 04/30/2004       | 11:02:26         | 1C13120             | 4.53 | 12.16 |
|     | PEMAA              | EVALX03C         | 04/30/2004       | 11:42:34         | 1C13120             | 4.53 | 12.15 |
|     | MIXAIAA            | MIXA10424B       | 04/30/2004       | 12:02:59         | 1C13120             | 4.53 | 12.15 |
|     | MIXA2AA            | MIXA20424B       | 04/30/2004       | 12:23:22         | 1C13120             | 4.53 | 12.15 |
|     | MIXA3AA            | MIXA30424B       | 04/30/2004       | 12:43:46         | 1C13120             | 4.53 | 12.15 |
|     | MIXA4AA            | MIXA40424B       | 04/30/2004       | 13:04:09         | 1C13120             | 4.53 | 12.15 |
|     | MIXASAA:           | MIXA50424B       | 04/30/2004       | 13:24:36         | 1C13120             | 4.53 | 12.15 |
| 008 | MDEIAA             | MIXE10424A       | 04/30/2004       | 13:44:58         | 1C13120             | 4.52 | 12.15 |
| 009 | MIXE2AA            | MIXE20424A       | 04/30/2004       | 14:05:21         | 1C13120             | 4.53 | 12.15 |
| 010 | MIXE3AA            | MIXE30424A       | 04/30/2004       | 14:25:43         | IC13120             | 4.52 | 12.15 |
| 011 | MIXE4AA            | MIXE40424A       | 04/30/2004       | 14:46:08         | 1C13120             | 4.53 | 12.15 |
| 012 | MIXESAA            | MIXE50424A       | 04/30/2004       | 15:06:33         | 1C13120             | 4.52 | 12.15 |
| 013 | ICMAXAA            | ICMAX0424B       | 04/30/2004       | 15:26:57         | 1C13120             | 4.53 | 12.15 |
| 014 | TOXWXAA            | TOXWX0424A       | 04/30/2004       | 15:47:19         | IC13120             | 4.52 | 12.15 |
| 015 | CHLDXAA            | CHLDX0424A       | 04/30/2004       | 16:07:42         | IC13120             | 4.52 | 12.15 |
| 016 | ARI6IAA            | AR1610424D       | 04/30/2004       | 16:28:04         | 1C13120             | 4,52 | 12.15 |
| 017 | ARI62AA            | AR1620424D       | 04/30/2004       | 16:48:30         | 1C13120             | 4.52 | 12.15 |
| OIB | AR163AA            | AR1630424D       | 04/30/2004       | 17:08:51         | 1C13120             | 4.52 | 12.15 |
| 019 | AR164AA            | AR1640424E       | 04/30/2004       | 17:29:14         | 1C13120             | 4.52 | 12.15 |
| 020 | ARI65AA            | AR1650424D       | 04/30/2004       | 17:49:34         | IC13120             | 4,52 | 12.15 |
| 021 | AR210AA            | AR210424A        | 04/30/2004       | 13:09:58         | 1C13120             | 4.52 | 12.15 |
| 022 | AR32XAA            | AR32X03C         | 04/30/2004       | 18:30:20         | IC13120             | 4.52 | 12.15 |
| 023 | AR420AA            | AR420424A        | 04/30/2004       | 18:50:43         | 1C13120             | 4.52 | 12.15 |
| 024 | AR483AA            | AR4830424A       | 04/30/2004       | 19:11:03         | 1CĬ3120             | 4,52 | 12.15 |
| 025 | AR543AA            | AR5430424A       | 04/30/2004       | 19:31:23         | 1C13120             | 4.52 | 12.15 |
| 026 | MDLAXAA            | MDLAX0424B       | 04/30/2004       | 19:51:44         | 1C13120             | 4.52 | 12.15 |
| 027 | MDLEXAA            | MDLEX0424A       | 04/30/2004       | 20:12:08         | 1C13120             | 4.52 | 12.15 |
| 028 | MD16XAA            | MD16X0424Å       | 04/30/2004       | 20:32:28         | 1C13120             | 4.52 | 12.15 |
| 029 | MDTXXAA            | MDTXX0424A       | 04/30/2004       | 20:52:49         | 1C13120             | 4.52 | 12.15 |
| 030 | MDCHXAA            | MDCHX0424A       | 04/30/2004       | 21:13:08         | IC13120             | 4.52 | 12.15 |
| 031 | IC16XAA            | IC16X0424B       | 04/30/2004       | 21:33:30         | 1C13120             | 4.52 | 12.15 |

**ICAL** Dates

TCX = Tetrachloro-m-xylene

ICAL RT QC Limits

04/30/2004 - 04/30/2004 IC13120

3C13120

05/01/2004 - 05/04/2004

DCB = Decachlorobiphenyl TCX = Terrachloro-m-xylene

(4.50 - 4.56 Minutes) 4.53 (12.12 - 12.18 Minutes) 12.15 (4.49 - 4.55 Minutes) 4.52

DCB = Decachlorobiphenyl

(12.12 - 12.18 Minutes)

## 10A

#### **IDENTIFICATION SUMMARY**

SAMPLE CODE NO.
PBLKX3

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

Case No.:

SAS No.:

SDG No.:

Lab Sample ID: BLANKA

Date(s) Analyzed: 5/7/04

*5/7/04* 

Instrument ID (1): H6722A

Instrument ID (2): H6722B

GC Column (1): RTX-CLP

ID: <u>0.32</u> (mm)

GC Column (2): RTXCLPII

ID: <u>0.32</u> (mm)

| ANALYTE                  | COL | RT   | FROM | то   | CONCENTRATION | %D    |
|--------------------------|-----|------|------|------|---------------|-------|
| delta-BHC                | 1   | 6.19 | 6.18 | 5.24 | 0.024         |       |
|                          | 2   | 6.23 | 6.21 | 6.27 | 0.0052        | 128.8 |
| Aldrin                   | 1   | 6.93 | 6.90 | 6.96 | 0.0054        |       |
| Aldrin                   | 2   | 6.81 | 6.76 | 6.82 | 0.0039        | 32.3  |
| gamma-Chlordane          | 1   | 7.94 |      | 7.96 | 0.014         |       |
| j<br>Garintia-crinorázus | 2   | 7.83 | 7.78 | 7,84 | 0,0079        | 55.   |

# **APPENDIX A**

# METALS DATA DELIVERABLES FORMS

## COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: LANCASTER\_LABORATORIES

BDG No.: CLV93

| Client Sample ID. | Lab Sample ID. |
|-------------------|----------------|
| 46                | 4247579        |
| F1-46             | 4247580        |
| F2-46             | 4247581        |

Were ICP interelement corrections applied?

Yes/No YES

Were ICP background corrections applied?

If yes, were raw data generated before application of background corrections?

Yes/No YES

Yes/No NO\_

LEGEND

| 1.   |
|------|
| asma |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| tion |
|      |

| Delege of  | Manager or the Manager's desi | nically accurate and complete.<br>ta package has been authorized by the<br>gnee, as verified by the following |
|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------|
| Signature: |                               | Name: Betsy S. Menefee                                                                                        |
| Date:      |                               | Title: Senior Specialist                                                                                      |

|                |              | INORGANIC  | ANALYSIS DATA<br>FORM 1 | SHEI        | ŠT          | CLIENT SAMPLE NO. |
|----------------|--------------|------------|-------------------------|-------------|-------------|-------------------|
| Lab Name: LANC | aster_labori | ATORIES    |                         |             |             | İ                 |
| SDG No.: CLV93 | i,           |            |                         |             |             |                   |
| Matrix (soil/w | ater): WATER | 2          |                         | Lal         | b Samp      | le ID: 4247579    |
| Level (low/med | ): LOW       |            |                         | Dat         | te Rec      | eived: 04/02/04   |
| % Solids:      | 0.0          |            |                         |             |             |                   |
| Co             | ncentration  | Units (ug, | /L or mg/kg dry         | y we:       | ight):      | UG/L              |
|                | CAS No.      | Analyte    | <br>  Concentration     | c           | Q           | M                 |
|                | _7439-92-1_  | Lead       | 40.7                    |             | s           | <b>F</b> _        |
| Color Before:  |              | Clarit     | ty Before:              | ·           | <del></del> | Texture:          |
| Color After:   |              | Clari      | ty After:               | <del></del> | Artifacts:  |                   |
| Comments:      |              |            |                         |             |             |                   |

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LANCASTER\_LABORATORIES\_\_\_\_

SDG No.: CLV93\_

Initial Calibration Source:

LLI\_\_\_\_

Continuing Calibration Source: LLI\_\_\_\_

Concentration Units: ug/L

| Analyte | Initial<br>True | Calibrat<br>Found | ion<br>%R(1) | True | Continuir<br>Found | ng Calibr<br>%R(2) | ration<br>Found | %R (2) | M |
|---------|-----------------|-------------------|--------------|------|--------------------|--------------------|-----------------|--------|---|
| Lead    | 30.0            | 28.93             | 96.4         | 25.0 | 25.14              | 100.6              | 26.59           | 106.4  | F |

Control Limit: Graphite Furnace 90-110
 Control Limit: Graphite Furnace 80-120

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LANCASTER\_LABORATORIES\_\_\_\_

SDG No.: CLV93\_

Initial Calibration Source:

LLI\_\_\_

Continuing Calibration Source: LLI\_\_\_\_

Concentration Units: ug/L

| Analyte | Initial<br>True | Calibra<br>Found | ation<br>%R(1) | True | Continui<br>Found | ng Calib<br>%R(2) | ration<br>Found | %R(2) | м |
|---------|-----------------|------------------|----------------|------|-------------------|-------------------|-----------------|-------|---|
| Lead    |                 |                  | İ .            | 25.0 | 26.50             | 106.0             | 25.07           | 100.3 | F |

(1) Control Limit: Graphite Furnace 90-110(2) Control Limit: Graphite Furnace 80-120

# LOW LEVEL CHECK STANDARD FOR AA AND ICP

Lab Name: LANCASTER\_LABORATORIES\_\_\_\_

SDG No.: PSB02\_

AA CRDL Standard Source: LLI\_\_\_\_

ICP CRDL Standard Source: LLI\_\_\_\_

#### Concentration Units: ug/L

|           |                                                  |             |               |        |        | •     |        |       |
|-----------|--------------------------------------------------|-------------|---------------|--------|--------|-------|--------|-------|
|           |                                                  | AA          |               |        |        | ICP   |        | ,     |
|           | ·                                                | WW          | 1             |        | Initi  | al    | Fina   |       |
| Analyte   | True                                             | Found       | %R            | True   | Found  | \$R   | Found  | ₹R    |
|           | <del> </del>                                     | <del></del> |               | 200.0  | 212.80 | 106.4 | 215.06 | 107.5 |
| Aluminum  | <del> </del>                                     |             |               | 20.0   | 10.83  | 54.2  | 13.86  | 69.3  |
| Antimony  | <del>                                     </del> |             |               | 10.0   | 8.76   | 87.6  | 9.87   | 98.7  |
| Arsenic   | <b> </b>                                         |             |               | 5.0    | 5.35   | 107.0 | 5.42   | 108.4 |
| Barium    | <del></del>                                      |             |               | 5.0    | 5.08   | 101.6 | 5.06   | 101.2 |
| Beryllium | <b></b>                                          |             |               | 5.0    | 5.10   | 102.0 | 5.05   | 101.0 |
| Cadmium   |                                                  |             |               | 200.0  | 206.33 | 103.2 | 206.49 | 103.2 |
| Calcium   |                                                  |             | <del></del> + | 5.0    | 4.36   | 87.2  | 5.35   | 107.0 |
| Chromium  |                                                  |             | <del></del>   | 5.0    | 5.14   | 102.8 | 4.77   | 95.4  |
| Cobalt    |                                                  |             |               | 10.0   | 10.68  | 106.8 | 10.31  | 103.1 |
| Copper    |                                                  |             |               | 200.0  | 214.98 | 107.5 | 210.97 | 105.5 |
| Iron      |                                                  | <u> </u>    |               | 20.0   | 17.93  | 89.6  | 20.65  | 103.2 |
| Lead      |                                                  |             |               |        | 98.62  | 98.6  | 95.58  | 95.6  |
| Magnesium |                                                  |             |               | 100.0  | 5.13   | 102.6 | 5.25   | 105.0 |
| Manganese |                                                  |             |               | 3.0    | 2.13   | 202.0 |        |       |
| Mercury   | 0.2                                              | 0.20        | 100.0         |        | 9.22   | 92.2  | 10.25  | 102.5 |
| Nickel    |                                                  |             |               | 10.0   |        | 101.3 | 504.46 | 100.9 |
| Potassium |                                                  |             |               | 500.0  | 506.48 | 84.4  | 12.06  | 120.6 |
| Selenium  |                                                  |             |               | 10.0   | 8.44   | 106.4 | 5.11   | 102.2 |
| Silver    |                                                  |             |               | 5.0    | 5.32   |       | 902.79 | 90.3  |
| Sodium    |                                                  |             |               | 1000.0 | 903.67 | 90.4  | 21.38  | 106.9 |
| Thallium  | 1                                                |             |               | 20.0   | 24.17  | 120.8 | 5.24   | 104.8 |
| Vanadium  |                                                  |             |               | 5.0    | 5.53   | 110.6 |        | 105.8 |
| Zinc      | 1                                                |             |               | 20.0   | 20.74  | 103.7 | 21.16  | 105.0 |
|           |                                                  |             |               |        |        |       |        |       |

Control Limits: All Metals 50-150% for samples < 10 times the value of the low level check standard

#### CRDL STANDARD FOR AA AND ICP

Lab Name: LANCASTER LABORATORIES\_\_\_\_

SDG No.: CLV93\_

AA CRDL Standard Source: LLI\_\_\_\_

ICP CRDL Standard Source: LLI\_\_\_\_

Concentration Units: ug/L

| ·       | CRDL St | andard for | AA .       |      | CRDL Sta<br>Initi |    | or ICP<br>Fina | ıl . |
|---------|---------|------------|------------|------|-------------------|----|----------------|------|
| Analyte | True    | Found      | <b>%</b> R | True | Found             | ₹R | Found          | ₹R   |
| Lead    | 3.0     | 2.42       | 80.7       |      | 1                 |    |                |      |

#### BLANKS

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: CLV93\_

Preparation Blank Matrix (soil/water): WATER\_\_\_\_

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L\_\_\_\_

|         | Initial<br>Calibration | n | Continuing Calibration Blank (ug/L) |     |     |     |    | Preparation<br>Blank |          |   |
|---------|------------------------|---|-------------------------------------|-----|-----|-----|----|----------------------|----------|---|
| Analyte | (ug/L)                 | С | 1                                   | С   | 2   | C   | 3  | С                    | C        | М |
| Lead    | -1.8                   | В | -1                                  | 8 B | -1. | 8 B | -1 | 8 B                  | -1.746 B | F |

#### MATRIX SPIKE/MATRIX SPIKE DUPLICATE

CLIENT SAMPLE NO.

Lab Name: LANCASTER\_LABORATORIES

SDG No.: CLV93

\*475568

Matrix (soil/water): WATER\_\_\_\_

\* Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

Level (low/med): LOW

| Analyte | М | Sample<br>Result C | MS<br>Sample<br>Result C | MSD<br>Sample<br>Result C | MS<br>Spike<br>Added | MSD<br>Spike<br>Added | MS<br>VR Q | MSD<br>*R Q | Control<br>Limit<br>%R |     | Ctl<br>Lim<br>RPD |
|---------|---|--------------------|--------------------------|---------------------------|----------------------|-----------------------|------------|-------------|------------------------|-----|-------------------|
| Lead    | F | 1.2000 U           | 18.6510                  | 18.9508                   | 20.00                | 20.00                 | 93         | 95          | 80 - 120               | 2 2 | 20                |

#### POST DIGEST SPIKE SAMPLE RECOVERY

CLIENT SAMPLE NO.

Lab Name: LANCASTER\_LABORATORIES

\*47556A

SDG No.: CLV93

Matrix (soil/water): WATER\_\_\_\_

Level (low/med): LOW

Concentration Units: ug/L

| Aı   | nalyte | Control<br>Limit<br>%R | Spiked Sample<br>Result (SSR)<br>C | Sample<br>Result (SR)<br>C | Spike<br>Added (SA) | &R | Q        | м |
|------|--------|------------------------|------------------------------------|----------------------------|---------------------|----|----------|---|
| Lead |        |                        | 12.13                              | 1.20 ປ                     | 20.0                | 61 | <u> </u> | F |

| Comments: |      |
|-----------|------|
|           |      |
|           | ···· |
|           |      |

| DII | 111 | • | THE CO | 1 |
|-----|-----|---|--------|---|

| CLIENT SAMPLE N | E No | PLE | AMI | S | ENT | ЬĪ | C |
|-----------------|------|-----|-----|---|-----|----|---|
|-----------------|------|-----|-----|---|-----|----|---|

\*47556D

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: CLV93\_\_\_\_

Matrix (soil/water): WATER\_\_\_\_

Level (low/med): LOW

% Solids for Sample: 0.0

% Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

| Analyte | Control<br>Limit | Samples |     | с     | Duplicate |          | RPD | Q | М |
|---------|------------------|---------|-----|-------|-----------|----------|-----|---|---|
| Lead    |                  |         | 1.2 | 000 U |           | 1.2000 [ | ]   |   | P |

NOTE:

An asterisk (\*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < Sx LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample page of the Quality Assurance Summary.

#### LABORATORY CONTROL SAMPLE

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: CLV93\_\_\_

Solid LCS Source:

Aqueous LCS Source: LLI\_

| Analyte | Ague<br>True | ous (ug/L)<br>Found | %R(1) | True | S<br>Found | olid<br>C | (mg/kg)<br>Limit | ₽Ŗ |
|---------|--------------|---------------------|-------|------|------------|-----------|------------------|----|
| Lead    | 20.0         | 20.29               | 101   |      |            |           |                  |    |

Control Limits: Statistically determined

#### STANDARD ADDITION RESULTS

Lab Name: LANCASTER\_LABORATORIES\_\_\_\_

SDG No.: CLV93\_\_

Concentration Units: ug/L

| Client  |    | O ADD   |   | 1     | ADD     |   | Corrected |   |
|---------|----|---------|---|-------|---------|---|-----------|---|
| Sample  |    | FOUND   |   | SPIKE | FOUND   |   | Final     |   |
| No.     | An | COM     | C | COM   | Con     | С | Conc.     | C |
| *47556  | PB | 1.2000  | Ü | 20.00 | 12.7045 |   | 1.2000    | Ü |
| *47556D | PB | 1.2000  | ט | 20.00 | 12.0647 |   | 1.2000    | U |
| *47558M | PB | 12.4791 |   | 20.00 | 25.6491 |   | 18.9508   |   |
| *4755BS | PB | 12.2768 |   | 20.00 | 25.4416 |   | 18.6509   |   |
| 46      | PB | 30.8982 |   | 20.00 | 46.0720 |   | 40.7257   |   |
| F1-46   | PB | 17.1621 |   | 20.00 | 33.5462 |   | 20.9497   |   |
| F2-46   | PB | 17.8272 |   | 20.00 | 35.4614 |   | 20.2189   |   |

#### ICP SERIAL DILUTIONS

CLIENT SAMPLE NO.

\*67024 L

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: MVA15\_\_\_\_

Matrix (soil/water): WATER\_\_\_\_

Level (low/med): LOW

Concentration Units: ug/L

|           | Initial<br>Sample |   | Serial<br>Dilution |   | }<br>Differ- |          |    |
|-----------|-------------------|---|--------------------|---|--------------|----------|----|
| Analyte   | Result (I)        | C | Result (S)         | С | ence         | Q        | М  |
| Antimony  |                   |   |                    |   |              |          | NR |
| Arsenic   | 9.40              | Ū | 47.00              | U |              |          | P  |
| Barium    | 227.56            |   | 235.60             |   | 3.5          |          | P  |
| Beryllium | 0.97              |   | 4.85               | _ |              |          | P  |
| Cadmium   | 0.76              |   | 3.80               | _ |              |          | Ð  |
| Chromium  | 3.00              |   | 15.00              | _ |              | L_       | P  |
| Cobalt    | 2.00              |   | 10.00              |   |              |          | P  |
| Copper    | 2.70              |   | 13.50              | _ |              |          | ₽  |
| Lead      | 10.00             | ט | 50.00              | ט |              |          | P  |
| Mercury   |                   |   |                    |   |              |          | NR |
| Nickel    | 7.05              |   | 25.50              |   | 100          | _        | P  |
| Selenium  | 5.90              |   | 29.50              |   |              | <u> </u> | Ъ  |
| Silver    | 2.00              |   | 10.00              |   |              | _        | P  |
| Thallium  | 9.90              |   |                    | _ |              | <u> </u> | P  |
| Tin       | 5.62              |   | 25.00              |   | 100          |          | P  |
| Vanadium  | 1.60              | U | 8.00               |   |              | L        | P  |
| Zinc      | 146.62            |   | 154.45             | L | 5.3          | <u> </u> | P  |

NOTE: An (E) in column "Q" indicates the presence of a chemical or physical interference in the matrix during analysis (% Difference > 10% when (I) > or = 50x MDL for ICP or (I) > or = 25x MDL for GFAA).

#### INSTRUMENT DETECTION LIMITS (QUARTERLY)

| Lab Name: LANCASTER_L | ABORATORIES |       |          |
|-----------------------|-------------|-------|----------|
| SDG No.: PSB02        |             |       |          |
| ICP ID Number:        | 08643       | Date: | 04/15/04 |
| Flame AA ID Number:   |             |       |          |
| Firmace AB ID Number: |             |       |          |

|           | <del></del>             |                 | ·             |    |
|-----------|-------------------------|-----------------|---------------|----|
| Analyte   | Wave-<br>length<br>(nm) | Back-<br>ground | IDL<br>(ug/L) | М  |
| Aluminum  | 308.21                  |                 | 30.0          | P  |
| Antimony  | 206.83                  |                 | 2.9           | ₽  |
| Arsenic   | 189.04                  |                 | 4.6           |    |
| Barium    | 493.40                  |                 | 0.15          | P  |
| Beryllium | 313.04                  |                 | 0.28          | ₽  |
| Cadmium   | 226.50                  |                 | 0.64          | P  |
| Calcium   | 317.93                  |                 | 9.8           | ₽  |
| Chromium  | 267.71                  |                 | 2.5           |    |
| Cobalt    | 228.61                  |                 | 1.4           | ₽  |
| Copper    | 324.75                  |                 | 1.1           | ₽  |
| Iron      | 259.94                  |                 | 36.1          |    |
| Lead      | 220.35                  |                 | 2.4           | P  |
| Magnesium | 279.07                  |                 | 8.4           | ₽  |
| Manganese | 257.61                  |                 | 0.13          | ₽  |
| Mercury   |                         |                 |               | NR |
| Nickel    | 231.60                  |                 | 2.2           | P  |
| Potassium | 766.49                  |                 | 18.1          | P  |
| Selenium  | 196.02                  |                 | 3.8           | P  |
| Silver    | 328.06                  |                 | 1.1           | P  |
| Sodium    | 330.23                  |                 | 225           | P  |
| Thallium  | 190.86                  |                 | 3.8           | P  |
| Vanadium  | 292.40                  |                 | 2.2           | Δ, |
| Zinc      | 206.20                  |                 | 1.4           | P  |

| Comments: |
|-----------|
|           |
|           |
|           |
|           |

## INSTRUMENT DETECTION LIMITS (QUARTERLY)

| Lab Name: LANCASTER_L | ABORATORIES |       |          |   |
|-----------------------|-------------|-------|----------|---|
| SDG No.: PSB02        |             |       |          |   |
| ICP ID Number:        |             | Date: | 04/15/04 | , |
| Flame AA ID Number:   | 62347       |       |          |   |
| Furnace AB TD Number: |             |       |          |   |

|   | Analyte   | Wave-<br>length<br>(nm) | Back-<br>ground | IDL<br>(ug/L) | м  |
|---|-----------|-------------------------|-----------------|---------------|----|
|   | Aluminum  |                         |                 |               | NR |
|   | Antimony  |                         |                 |               | NR |
| I | Arsenic   |                         |                 |               | NR |
|   | Barium    |                         |                 |               | NR |
|   | Beryllium |                         |                 |               | NR |
|   | Cadmium   |                         |                 |               | NR |
|   | Calcium   |                         |                 |               | NR |
|   | Chromium  |                         |                 |               | NR |
| • | Cobalt    |                         |                 |               | NR |
|   | Copper    |                         |                 |               | NR |
|   | Iron      |                         |                 |               | NR |
|   | Lead      | •                       |                 |               | NR |
|   | Magnesium |                         |                 |               | NR |
|   | Manganese |                         |                 |               | NR |
|   | Mercury   | 254.00                  |                 | 0.052         | CV |
|   | Nickel    |                         |                 |               | NR |
|   | Potassium |                         |                 |               | NR |
|   | Selenium  |                         |                 |               | NR |
|   | Silver    |                         |                 |               | NR |
|   | Sodium    |                         |                 |               | NR |
|   | Thallium  |                         |                 |               | NR |
|   | Vanadium  |                         |                 |               | NR |
|   | Zinc      |                         |                 |               | NR |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |

#### METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: LANCASTER\_LABORATORIES

SDG No.: PSB02

Method: \_P\_

Matrix: (soil/water): WATER

Date: 05/01/04

| <u>,                                     </u> | Wave-  |        |        |        |
|-----------------------------------------------|--------|--------|--------|--------|
|                                               | length | Back-  | TOÖ    | MDL    |
| Analyte                                       | (mm)   | ground | (ug/L) | (ug/L) |
| Aluminum                                      | 308.21 |        | 200    | 39.8   |
| Antimony                                      | 206.83 |        | 20.0   | 9.2    |
| Arsenic                                       | 189.04 |        | 10.0   | 9.4    |
| Barium                                        | 493.40 |        | 5.0    | 0.45   |
| Beryllium                                     | 313.04 |        | 5.0    | 0.97   |
| Cadmium                                       | 226.50 |        | 5.0    | 0.76   |
| Calcium                                       | 317.93 |        | 200    | 47.9   |
| Chromium                                      | 267.71 |        | 5.0    | 3.0    |
| Cobalt                                        | 228.61 |        | 5.0    | 2.0    |
| Copper                                        | 324.75 |        | 10.0   | 2.7    |
| Iron                                          | 259.94 |        | 200    | 49.5   |
| Lead                                          | 220.35 |        | 20.0   | 10.0   |
| Magnesium                                     | 279.07 |        | 100    | 19.3   |
| Manganese                                     | 257.61 |        | 5.0    | 0.84   |
| Mercury                                       |        |        |        |        |
| Nickel                                        | 231.60 |        | 10.0   | 5.1    |
| Potassium                                     | 766.49 |        | 500    | 57.1   |
| Selenium                                      | 196.02 |        | 10.0   | 5.9    |
| Silver                                        | 328.06 |        | 5.0    | 2.0    |
| Sodium                                        | 330.23 |        | 1000   | 462    |
| Thallium                                      | 190.86 |        | 20.0   | 9.9    |
| Vanadium                                      | 292.40 |        | 5.0    | 1.6    |
| Zinc                                          | 206.20 |        | 20.0   | 4.8    |

\*\* The LOQ must be adjusted for % Solids and Sample Weight for samples reporting in mg/kg and ug.

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |

## METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: LANCASTER\_LABORATORIES

SDG No.: PSB02

Method: \_CV\_ Matrix: (soil/water): WATER

Date: 05/01/04

| Analyte   | Wave-<br>length<br>(nm) | Back-<br>ground | LOQ<br>(ug/L) | MDL<br>(ug/L)                           |
|-----------|-------------------------|-----------------|---------------|-----------------------------------------|
| Aluminum  |                         |                 |               |                                         |
| Antimony  |                         |                 |               |                                         |
| Arsenic   |                         |                 |               |                                         |
| Barium    |                         |                 |               |                                         |
| Beryllium |                         |                 |               |                                         |
| Cadmium   |                         |                 |               |                                         |
| Calcium   | -                       |                 |               | *************************************** |
| Chromium  |                         |                 |               |                                         |
| Cobalt    | ·                       |                 |               |                                         |
| Copper    |                         |                 |               |                                         |
| Iron      |                         |                 |               |                                         |
| Lead      |                         |                 |               |                                         |
| Magnesium |                         |                 |               |                                         |
| Manganese |                         |                 |               |                                         |
| Mercury   | 254.00                  |                 | 0.20          | 0.028                                   |
| Nickel    |                         |                 |               | ·                                       |
| Potassium |                         |                 |               |                                         |
| Selenium  |                         |                 |               |                                         |
| Silver    |                         |                 |               |                                         |
| Sodium    |                         |                 | ·             |                                         |
| Thallium  |                         |                 |               |                                         |
| Vanadium  |                         |                 |               |                                         |
| Zinc      | <u> </u>                |                 | <u> </u>      |                                         |

\*\* The LOQ must be adjusted for % Solids and Sample Weight for samples reporting in mg/kg and ug.

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |

# ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

| Lab Name: L | ancaster_lab   | ORATORIES   | Contr        | act:            | -         |             |
|-------------|----------------|-------------|--------------|-----------------|-----------|-------------|
| Lab Code: _ | ***            | Case No.:   | SAS N        | io.:            | SDG No    | .: MVA15    |
| ICP ID Numb | oer:05936      | <del></del> | Date:        | 4/8/04          |           |             |
|             | Wave-          |             | Interalement | : Correction Fa | ctor for: |             |
| Analyte     | length<br>(nm) | AL          | CA           | FE              | MG        | <b>CO</b> . |
| Antimony    | 206.83         | 0.0000000   | 0.0000000    | 0.0000220       | 0.0000000 | 0.0000000   |
|             | 189.04         | 0.0000000   | 0.0000000    | 0.0000000       | 0.0000000 | 0.0000000   |
| Arsenic     | 493.40         | 0.0000000   | 0.0000020    | 0.0000050       | 0.0000000 | 0.000000    |
| Barium      | 313.04         | 0.0000020   | 0.0000000    | 0.0000000       | 0.0000000 | 0.000000    |
| Beryllium   | 226.50         | 0.0000010   | 0.0000000    | 0.0000640       | 0.0000000 | -0.0001740  |
| Cadmium     |                | 0.0000000   | 0.0000000    | 0.0000000       | 0.0000030 | 0.0000000   |
| Chromium    | 267.71         | 0.0000000   | 0.0000000    | 0.0000000       | 0.0000000 | 0.000000    |
| Cobalt      |                | 0.0000010   | 0.0000000    | 0.0000000       | 0.0000000 | 0.000000    |
| Copper      | 324.75         | 0.0004780   | 0.0000000    | 0.0000990       | 0.0000170 | 0.0000920   |
| Leadl       | 220.35         | -0.0002980  | 0.0000000    | 0.0000320       | 0.0000000 | 0.0000000   |
| Lead2       | 220.35         | -0.0002500  |              |                 |           |             |
| Mercury     | 222 (2)        | 0.0000000   | 0.0000000    | 0.000000        | 0.0000000 | -0.0006670  |
| Nickel      | 231.60         | 0.0000180   | 0.0000000    | 0.0000310       | 0.0000000 | 0.0003240   |
| Selenium1   | 196.02         | 0.000020    | 0.0000000    | -0.0003360      | 0.0000000 | -0.0005540  |
| Selenium2   | 196.02         | 0.0000020   | 0.0000000    | 0.000000        | 0.0000000 | 0.0000000   |
| Silver      | 328.06         | -0.0000900  | 0.0000000    | -0.0000690      | 0.0000000 | 0.0031230   |
| Thallium    | 190.86         | 0.0000000   | 0.0000000    | 0.0000000       | 0.0000000 | 0.000000    |
| Tin         | 189.98         | 0.0000000   | p.0000000    | -0.0002730      | 0.0000000 | 0.000000    |
| Vanadium    | 292.40         | 0.0000110   | 0.0000000    | -0.0000500      | 0.0000860 | 0.000000    |
| Zinc        |                |             |              |                 |           |             |

# ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

| Lab Name: I | Name: LANCASTER_LABORATORIES |            | Contract:          |                 | ·              |            |
|-------------|------------------------------|------------|--------------------|-----------------|----------------|------------|
| Lab Code:   |                              | Case No.:  |                    |                 | SDG No.: MVA15 |            |
| ICP ID Numi | per:0593                     | 6          | Date               | : 4/8/04        |                |            |
| Analyte     | Wave-<br>length<br>(nm)      | CR         | Interelement<br>MN | t Correction Fa | NI             | SB         |
| Antimony    | 206.83                       | -0.0029130 | 0.0000000          | 0.0000000       | 0.0000000      | 0.000000   |
| Arsenic     | 189.04                       | -0.0049740 | 0.0000000          | -0.0029600      | 0.0000000      | 0.000000   |
| Barium      | 493.40                       | 0.0000000  | 0.0000000          | 0.000000        | 0.0000000      | 0.000000   |
| Beryllium   | 313.04                       | 0.0000000  | 0.0000000          | 0.0000000       | 0.0000000      | 0.000000   |
| Cadmium     | 226.50                       |            | 0.0000000          | 0.0000000       | 0.0000000      | 0.000000   |
| Chromium    | 267.71                       | 0.0000000  | 0.0000620          | 0.0000000       | 0.0000000      | 0.0000000  |
| Cobalt      | 228.61                       | -0.0003570 | 0.0000000          | -0.0002670      | 0.0001680      | 0.0000000  |
| Copper      | 324.75                       |            | 0.0000000          | -0.0003110      | 0.0000000      | 0.0000000  |
| Lead1       | 220.35                       |            | 0.0001030          | 0.0000000       | 0.0006100      | 0.0001120  |
| Lead2       | 220.35                       |            | 0.0000940          | -0.0010200      | 0.0000000      | 0.000000   |
| Mercury     |                              |            |                    |                 |                |            |
| Nickel      | 231.60                       | 0.0000000  | 0.0000000          | 0.0000000       | 0.0000000      | -0.0001340 |
| Seleniuml   | 196.02                       |            | 0.0003840          | 0.0004630       | 0.0000000      | 0.000000   |
| Selenium2   | 196.02                       |            | 0.0001860          | 0.0000000       | 0.0000000      | 0.000000   |
| Silver      | 328.06                       |            | -0.0001000         | -0.0004360      | 0.0000000      | 0.0000000  |
| Thallium    | 190.86                       |            | -0.0030360         | -0.0008050      | 0.0000000      | 0.000000   |
| Tin         | 189.98                       |            | 0.0000000          | 0.0000000       | 0.0000000      | 0.000000   |
| Vanadium    | 292.40                       |            | 0.0001270          | 0.0000000       | 0.0000000      | 0.0000000  |
| Zinc        | 206.20                       |            | 0.0000000          | 0.0003360       | 0.0000000      | 0.000000   |
| Comments:   |                              |            |                    |                 | `              |            |

## ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

| Lab Code: _ |                 | Case No.: | SAS N        | lo.:          | SUG N      | o.: MVA15 |
|-------------|-----------------|-----------|--------------|---------------|------------|-----------|
| ICD ID Numb | er:0593         | 5         | Date:        | 4/8/04        |            |           |
|             | Wave-<br>length |           | Interelement | Correction Fa | ector for: |           |
| Analyte     | (mm)            | SR        | TI           | TL .          | V          |           |
| Antimony    | 206.83          | 0.0000000 | -0.0022200   | 0.0000000     | 0.0000000  |           |
| Arsenic     | 189.04          | 0.0000000 | 0.0000000    | 0.000000      | -0.0001800 |           |
| Barium      | 493.40          | 0.0000000 | 0.000000     | 0.000000      | 0.0000000  |           |
| Beryllium   | 313.04          | 0.0000000 | 0-0000000    | 0.000000      | 0.0013800  |           |
| Cadmium     | 226.50          | 0.0000000 | 0.0000000    | 0.0000000     | 0.0000000  |           |
| Chromium    | 267.71          | 0.0000000 | 0.000000     | 0.0000000     | -0.0001000 |           |
| Cobalt      | 228.61          | 0.0000000 | 0.0016970    | 0.0000000     | 0.0000330  |           |
| Copper      | 324.75          | 0.0000000 | 0.0000000    | 0.0000000     | 0.0000280  |           |
| Lead1       | 220.35          | 0.0000000 | 0.0007750    | 0.0000000     | 0.0000000  | ·         |
| Lead2       | 220.35          | 0.0000000 | -0.0008300   | 0.0000000     | -0.0001500 |           |
| Mercury     |                 |           |              |               | ·          |           |
| Nickel      | 231.60          | 0.0000000 | 0.0000000    | -0.0006600    | 0.0000000  |           |
| Selenium1   | 196.02          | 0.0000000 | 0.0000000    | 0.0000000     | 0.0001670  |           |
| Selenium2   | 196.02          | 0.0000000 | 0.0000000    | 0.0000000     | -0.0001100 |           |
| Silver      | 328.06          | 0.0000000 | 0.0000000    | 0.0000000     | 0.0000440  |           |
| Thallium    | 190.86          | 0.0000000 | 0.0007800    | 0.0000000     | 0.0017640  |           |
| Tin         | 189.98          | 0.0000000 | 0.0000000    | 0.0000000     | 0.000000   |           |
| Vanadium    | 292.40          | 0.0000000 | 0.0006160    | 0.0000000     | 0.0000000  |           |
| Zinc        | 206.20          |           | 0.0000000    | 0.0000000     | 0.0000000  |           |

## ICP LINEAR RANGES (QUARTERLY)

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: MVA15\_\_\_

ICP ID Number: \_\_\_05936 \_\_\_\_

Date: 04/15/04

| Analyte   | Integ.<br>Time<br>(Sec.) | Concentration (ug/L) | м        |
|-----------|--------------------------|----------------------|----------|
| Antimony  | 10.00                    | 50000.0              | Ω        |
| Arsenic   | 10.00                    | 50000.0              | P        |
| Barium    | 10.00                    | 10000.0              | <u>Q</u> |
| Beryllium | 10.00                    | 10000.0              | P        |
| Cadmium   | 10.00                    | 50000.0              | P        |
| Chromium  | 10.00                    | 120000.0             | p        |
| Cobalt    | 10.00                    | 70000.0              | ₽        |
| Copper    | 10.00                    | 70000.0              | P        |
| Lead      | 10.00                    | 70000.0              | P        |
| Mercury   |                          |                      | NR       |
| Nickel    | 10.00                    | 50000.0              | P        |
| Selenium  | 10.00                    | 10000.0              | P        |
| Silver    | 10.00                    | 10000.0              | P        |
| Thallium  | 10.00                    | 20000.0              | P        |
| Tin       | 10.00                    | 20000.0              | P        |
| Vanadium  | 10.00                    | 30000.0              | P        |
| Zinc      | 10.00                    | 35000.0              | P        |

| Comments: |
|-----------|
|           |
|           |
|           |

#### PREPARATION LOG

Lab Name: LANCASTER\_LABORATORIES\_\_\_\_

SDG No.: CLV93\_\_\_

Method: F\_

| EPA<br>Sample<br>No. | Preparation<br>Date | Weight<br>(gram) | Volume<br>(ml) |
|----------------------|---------------------|------------------|----------------|
| *47556               | 04/05/04            |                  | 50             |
| *47556D              | 04/05/04            |                  | 50             |
| *47556M              | 04/05/04            |                  | 50             |
| *47556S              | 04/05/04            |                  | 50             |
| 46                   | 04/05/04            |                  | 50             |
| F1-46                | 04/05/04            |                  | 50             |
| F2-46                | 04/05/04            |                  | 50             |
| LCSW                 | 04/05/04            |                  | 50             |
| PBW                  | 04/05/04            |                  | 50             |

## ANALYSIS RUN LOG

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: PSB02\_\_\_

Instrument ID Number: 62347\_\_\_\_\_ Method: CV

Start Date: 05/11/04 End Date: 05/11/04

|                      | · · · · · · · · · · · · · · · · · · · |      |    |   | Γ      |          |           |                    |          |         |          |          |          |          |          | -                                      |          | An       | al | yt        | 28       |          |          |          |          |            |              | <del></del>    |          |          |                |                |                 | ٦        |
|----------------------|---------------------------------------|------|----|---|--------|----------|-----------|--------------------|----------|---------|----------|----------|----------|----------|----------|----------------------------------------|----------|----------|----|-----------|----------|----------|----------|----------|----------|------------|--------------|----------------|----------|----------|----------------|----------------|-----------------|----------|
| EPA<br>Sample<br>No. | D/F                                   | Time | *  | R | A<br>L | S<br>B   | A<br>S    | B                  | B<br>E   | C       | C        | C<br>R   | CO       | a o      | F        | P<br>B                                 | M        | M        | H  | N<br>I    | K        | S        | A<br>G   |          | T<br>L   | V          | Z<br>N       |                |          |          |                |                |                 |          |
| <b>S</b> 0           | 1.00                                  | 0654 |    |   |        |          |           |                    |          |         |          |          |          |          |          |                                        |          |          | X  |           |          | L        | L        | L        | L        | <u> </u> _ | L            | L              |          |          | Ш              | 4              | 4               | 4        |
| S0.2                 | 1.00                                  | 0655 |    |   |        |          |           | L                  |          |         | L        | L        |          |          | _        |                                        | L        | <u> </u> | X  |           |          | <u> </u> | _        | L        | <b> </b> | Ļ          | <b>!</b>     | ┞              | <u> </u> | Щ        | Н              | -              | $\dashv$        | 4        |
| S0.5                 | 1.00                                  | 0657 |    |   |        |          |           | 乚                  | L        |         | L        | oxdot    |          |          | <u> </u> | L                                      | Ļ        | _        | X  | Щ         | _        | <u> </u> | <u> </u> | L_       | <u> </u> | ╙          | ┡            | L              | _        | Ш        | Н              | 4              | $\dashv$        | 4        |
| \$1.0                | 1.00                                  | 0658 |    |   |        |          | _         | L                  | L        |         | L        |          |          | _        | L        | _                                      | L        | <u> </u> | X  |           | _        |          | <u> </u> | <u>_</u> | <u> </u> | ļ          | ┡            | <u> </u>       | <u> </u> | _        | Ш              | -              | -               | -        |
| S2.5                 | 1.00                                  | 0659 |    |   |        | <u> </u> | L         | L                  | <u> </u> |         | L        |          | L        | _        | L        | 乚                                      | L        | <u> </u> | X  |           |          | <u> </u> | <u> </u> | _        | <u> </u> | ┡          | L            | <u> </u>       | _        | Ш        | Ш              | -              | -               | _        |
| S5.0                 | 1.00                                  | 0700 |    |   |        |          | <u> </u>  |                    | L        | <u></u> | L        | L        | _        |          | L        | 乚                                      |          | ᆫ        | X  |           |          | <u> </u> | <u> </u> | L        | _        | L          | Ļ            | ┞              | _        |          | _              | _              | -               | -        |
| ICV                  | 1.00                                  | 0702 |    |   |        |          |           |                    |          |         | _        |          |          | _        | L        | L                                      | L        | _        | X  |           | L        | L        | ļ        | L        | <u> </u> | L          | 1_           | <u> </u>       | _        |          |                | -4             | -               |          |
| ICB                  | 1.00                                  | 0704 |    |   |        |          |           |                    |          |         | L        | L        | <u></u>  | _        | L        | L                                      | L        | L        | X  |           | Ļ        | <u> </u> | <u> </u> | L        | <u> </u> | <u> </u>   | ↓_           | ↓_             | ┞        | <u> </u> | -              | _              | -               | 4        |
| CRA                  | 1.00                                  | 0705 |    |   | L      |          | <u> </u>  |                    |          |         | L        | L        | L        | L        | L        | L                                      | <u> </u> | L        | X  | L         |          | <u>L</u> |          | <u> </u> | <u> </u> | <u> </u>   | <u> </u>     | 辶              | L        |          | Щ              |                | 4               | -        |
| CCV                  | 1.00                                  | 0706 |    |   | Ţ      |          |           |                    |          |         |          |          |          | <u> </u> | L        | L                                      | L        | L        | X  | L         | L_       | _        | _        | Ļ        | L        | _          | <u> </u>     | Ļ.             | _        |          | Ш              | _              | 4               | _        |
| CCB                  | 1.00                                  | 0707 |    |   |        |          |           | L                  |          |         |          |          |          | L        | L        | L                                      | L        | L        | X  | L         |          | L        |          | L        | _        | <u> </u>   | <u> </u>     | <u> </u>       | <u> </u> |          | Ш              | $\dashv$       | $\dashv$        | _        |
| ZZZZZZ               | 1.00                                  | 0708 |    |   |        |          |           |                    | L        |         |          | L        | <u> </u> | L        | L        |                                        |          | L        | L  | L         |          | L        |          |          | Ļ        | L          | ↓_           | <u> </u>       |          |          |                | _              | $\dashv$        | _        |
| ZZZZZZ               | 1.00                                  | 0710 |    |   |        |          |           |                    | L        |         |          |          |          | L        | L        |                                        | L        | L        | L  | 乚         | _        | L        | _        | _        | <u> </u> | L          | Ļ            | 1_             | Ш        | _        |                | _              | $\dashv$        | 4        |
| ZZZZZZ               | 1.00                                  | 0711 |    |   |        |          | 1_        |                    |          |         | L        | 乚        | L        |          | L        | L                                      | L        |          | _  | L         | _        | L.       | L.       | Ļ        | ┖        | L          | ┞-           | <u> </u>       | <u> </u> |          | Щ              | _              | $\dashv$        | 4        |
| ZZZZZZ               | 1.00                                  | 0713 |    |   |        | L        |           |                    |          |         | L        | _        | L        | _        | <u> </u> | _                                      | L        | 上        | ↓_ | L         | L        | L        | L        | L        | ↓_       | Ļ          | 1            | ↓              | ┡        |          |                | _              | $\vdash$        |          |
| 222222               | 1.00                                  | 0715 |    |   |        | L        |           |                    | L        | 上       | L        | <u>L</u> | L        | L        | L        | ــــــــــــــــــــــــــــــــــــــ | ┖        | <u> </u> | ↓_ | L         | L        | L        | ┞        | <u> </u> | ↓_       | ┞          | <u> </u>     | ╀              | Ļ        | _        | Ш              | $\blacksquare$ | $\dashv$        | -        |
| 222222               | 1.00                                  | 0716 |    |   |        |          |           |                    |          | L       | L        | L        | <u> </u> | <u> </u> | L        | L                                      | L        | L        | L  | L         | L        | <u> </u> | <u> </u> | L        | ╄        | <u>Ļ</u>   | ╄            | ╄              | ļ        | L        | _              | _              | -               | _        |
| ZZZZZZ               | 1.00                                  | 0717 | 1. |   |        |          |           | $\Gamma$           | L        |         | L        | L        | L        | <u>L</u> | <u> </u> | <u>L</u>                               | L        | ┺        | 1_ | 上         | L        | L        | ┺        | <b>!</b> | 丄        | Ļ          | ┖            | ╄              | ↓_       | _        | Ш              |                | ┝╌┩             | ႕        |
| ZZZZZZ               | 1.00                                  | 0718 |    |   |        | L        | Ŀ         |                    | L        |         | L        | L        | L        | L        | L        | L                                      | L        | L        | 上  | L         | L        | 1_       | <u> </u> | L        | 上        | 丄          | ╀            | L              | L        | 匚        |                | _              | Н               |          |
| ZZZZZZ               | 1.00                                  | 0719 |    |   | L      |          | <u> </u>  |                    | L        |         | <u> </u> |          | L        | L        | L        | L                                      | L        | L        | L  | L         | L        | 上        | <u>_</u> | L        | <u> </u> | ╄          | ┺            | 丰              | _        | _        |                |                | $\dashv$        | _        |
| ZZZZZZ               | 1.00                                  | 0720 |    |   | T      | $\prod$  | L         |                    | L        | L       | L        |          | L        | L        | L        | L                                      | L        | 丄        | _  | L         |          | L        | ļ        | ļ.,      | <u> </u> | ↓_         | 1_           | 1              | L        |          |                | Щ              | Н               | ᅴ        |
| CCV                  | 1.00                                  | 0721 |    |   |        | L        | $oxed{L}$ | L                  | L        |         | L        | 丄        | L        | 丄        | L        | 上                                      |          | _        | X  |           |          |          | <u> </u> | 1        | <u> </u> | 上          | ↓_           | ╀              | _        | Ļ        | _              | $\blacksquare$ | Н               | _        |
| CCB                  | 1.00                                  | 0723 |    |   | Τ      | Π        |           |                    | L        |         |          | <u>_</u> | <u> </u> | <u> </u> |          | Ŀ                                      | L        |          | X  | L         | Ŀ        | 1_       | <u>Ļ</u> | <u></u>  | <u> </u> | ┺          | ļ_           | <del> </del> _ | <u> </u> | L        |                | Ш              | Н               | $\dashv$ |
| ZZZZZZ               | 1.00                                  | 0724 |    |   | Τ      |          |           |                    |          | L       |          |          |          |          | L        | L                                      | L        | 上        | L  | 丄         | L        | L        | 上        | L        | 1_       | L          | <u>_</u>     | ↓_             | Ļ        |          | Ш              | Ш              | Ш               | _        |
| ZZZZZZ               | 1.00                                  | 0726 |    |   | Ι      |          |           |                    |          |         |          |          | L        | L        | L        | L                                      | L        | $\perp$  | 上  | 1         | <u> </u> | L        | L        | $\perp$  | 1        | ╀          | Ļ            | 4              | 上        | <u> </u> | _              | Ш              | $\vdash \vdash$ | _        |
| ZZZZZZ               | 1.00                                  | 0727 | Π  |   | Ε      | Γ        | L         |                    |          |         |          |          |          | <u> </u> | L        | 1                                      |          | L        | 1_ | _         | L        | 1_       | 1        | Ļ        | 1        | Ļ          | 丰            | 丰              | ↓_       | <u> </u> | ļ              | Ш              | Н               | _        |
| ZZZZZZ               | 1.00                                  | 0728 |    |   |        |          |           | $oxed{\mathbb{L}}$ |          |         |          |          |          | L        | L        | <u> </u>                               | L        |          | L  | <u> </u>  | L        | 1_       | L        | L        | 1        | Ļ          | ╀            | 1              | ↓_       | ┞        | <b> </b>       | Ш              | $\sqcup$        | _        |
| ZZZZZZ               | 1.00                                  | 0729 |    |   | Ι      |          |           | $oxed{L}$          |          |         | L        | $\perp$  | L        | 1        | L        | 1                                      | L        | 丰        | 1  | 1_        | L        | 1        | 1        | ╀        | ╄        | ╄          | ╀            | ╀-             | 4-       | -        | <del>  -</del> | $\vdash$       | ⊢⊢              |          |
| ZZZZZZ               | 1.00                                  | 0731 |    |   |        | L        | Π         |                    | L        |         | L        | <u> </u> | L        | 1        | 丄        | $\perp$                                | L        | 上        | 1  | 1         | L        | 4        | ↓_       | Ļ        | ╀        | ╀          | <del> </del> | 4_             | ╄-       |          | ļ              | $\vdash$       | $\vdash \vdash$ |          |
| ZZZZZZ               | 1.00                                  | 0732 |    |   | I      |          |           | L                  |          |         | Ĺ        |          |          | 1        | L        | 丄                                      | 1        | 1_       | 1  | 4         | Ļ        | _        | 1        | 1        | 4        | ╀          | ╀            | +              | ╀        | ╀        | ╀-             | <b> </b>       | ⊢┤              |          |
| ZZZZZZ               | 1.00                                  | 0734 |    |   | L      |          |           |                    |          |         |          |          | L        | L        | L        | L                                      | Ļ        | 1_       | ╀  | 1         | 1_       | 1        | 4        | <u> </u> | 4        | 4          | 4            | 4-             | ┼-       |          | ╀              | $\vdash$       | $\vdash$        | -        |
| ZZZZZZ               | 1.00                                  | 0735 |    |   | T      |          | L         | L                  | $\perp$  |         | Ĺ        |          | L        |          | L        | L                                      | L        |          | 1  | <u> L</u> | L        | 1_       | L        | 1        | 1        | ┸          | L            | _              |          |          | 1              |                | Ш               | لب       |

#### ANALYSIS RUN LOG

Lab Name: LANCASTER\_LABORATORIES\_\_\_

SDG No.: PSB02\_\_\_

Instrument ID Number: 62347\_\_\_\_

Method: CV

Start Date: 05/11/04 End Date: 05/11/04

|                      |      |      |     |               |          |          |          |          |                    |          |          |          |          |          |          |              | Ar           | al           | γt           | es           |          |          |              |                |              |              |              |              |              |                 |                 |          |
|----------------------|------|------|-----|---------------|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------|--------------|--------------|--------------|--------------|--------------|----------|----------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|-----------------|-----------------|----------|
| EPA<br>Sample<br>No. | D/P  | Time | % R | A             | S        | AS       | B        | B<br>B   | C<br>D             | C<br>A   | C<br>R   | C<br>O   | C<br>U   |          |          |              | M            | H            | N            | K            | S        |          | N<br>A       |                | V            | Z            |              |              |              |                 |                 | I        |
| 22222                | 1.00 | 0737 |     |               |          |          | L        |          |                    |          |          |          |          | Ш        | L        | L            |              | L            | _            | _            | L        | _        | L            | <u> </u>       | Ļ            | L            | Н            | Н            | Н            | $\vdash$        | 4               | +        |
| CCV                  | 1.00 | 0738 |     | ┸             | L        |          | L        |          |                    | L        | Ш        | Ш        |          | _        | ļ        | <b>L</b>     | <b> </b> _   | X            | ┞-           | <u> </u>     | <b> </b> |          | ├-           | ├              | ⊢            | ├-           | Н            | $\vdash$     | H            | $\vdash$        | +               | +        |
| CCB                  | 1.00 | 0739 |     | L             | 上        | L        | _        | L        | <u> </u>           | _        |          | Ш        | _        | L_       | _        | <u> </u>     | ┞            | X            | ┡            | ⊢            | <u> </u> | _        | ┡            | ╀┈             | جبة          | <b> </b>     | Н            |              | $\vdash$     | $\vdash$        | +               | +        |
| ZZZZZZ               | 1.00 | 0740 |     | 丄             | L        | L        | <u> </u> | L        | L                  | L        |          | _        | L_       | L.       | <u> </u> | ╙            | ļ.,          | ╄            | ┡            | <b> </b>     | <u> </u> | _        | ┡            | ļ              | ╀            | <b> </b> -   | Ы            |              | $\vdash$     | ⊢               | -+              | +        |
| 22222                | 1.00 | 0741 |     | Ŀ             | L        | L        | <u> </u> | L        | _                  |          | ļ        |          |          | L        | L        | ┺            | Ļ            |              | <b> </b> _   | ┞            | <u> </u> | ⊢        | L            | ┞-             | ┞            | ├-           | -            | Н            | Н            | $\vdash$        | 4               | +        |
| ZZZZZZ               | 1.00 | 0744 |     | L             | L        | L        | <u>_</u> | L        | <u>_</u>           | _        | <u> </u> |          | ļ        | <u> </u> | Ļ        | <b> </b> _   | <del> </del> | ╄            | ļ            | ↓_           | <u> </u> | ļ        | ļ.,          | ┡              | -            | <del> </del> | -            | $\vdash$     | Н            | $\vdash$        | $\dashv$        | +        |
| ZZZZZZ               | 1.00 | 0745 |     |               | L        | L        | L        | <u></u>  | L.                 | <u> </u> | <u> </u> |          | <u> </u> | _        | ㄴ        | ┺            | ╙            | ↓_           | ┞            | <del> </del> | ļ        | <b>!</b> | ┞-           | ╀-             | ┡            | -            | -            | Н            |              |                 | -               | +        |
| ZZZZZZ               | 1.00 | 0746 |     | L             |          | L        | 上        | L        | L                  | L        | <u> </u> | _        | <u> </u> | <u> </u> | L        | <u> </u>     | ↓_           | <del> </del> | ↓_           | ┞            | ļ        | -        | 1            | ļ              | <u> </u>     | ــ           | ┟╌┤          | $\vdash$     | Н            | Н               | -+              | +        |
| 22222                | 1.00 | 0748 |     |               |          | L        |          | L        | L                  | L        | <u> </u> | _        | _        | L        | Ļ        | Ļ            | ╄            | 1            | ↓_           | <u> </u>     | _        | <u> </u> | <u> </u>     | ┡              | ┞            | ـ            | <b> </b>     | ⊢            | Ы            | $\vdash \vdash$ | -               | +        |
| ZZZZZZ               | 1.00 | 0749 |     | L             | <u>L</u> | L        | _        | L        | L                  | _        | <u> </u> | $\vdash$ | <u> </u> | L        | L        | <del> </del> | <b>Ļ</b>     | 4_           | <b> </b>     | ļ            | <b> </b> | <u> </u> | ╀-           |                | ┞-           | -            | ┦            | ⊢            | Н            | Н               |                 | +        |
| ZZZZZZ               | 1.00 | 0750 |     | L             | L        | L        | L        | <u>L</u> | L                  | L        | <u>L</u> | 乚        | <u> </u> | <u> </u> | _        | <u> </u>     | 1            | 丰            | _            | <u> </u>     | L        | <u> </u> | ↓_           | ↓_             | ⊢            | ┞            | H            |              | Н            | Н               | -               | +        |
| 22222                | 1.00 | 0751 |     |               |          | _        | L        | _        | L                  | L        |          | <u> </u> | <u> </u> | _        | ļ        | Ļ            | <u> </u>     | <u> </u>     | ـــ          | 1_           | <u> </u> | L        | ļ_           | ╀-             | <u> </u>     | 1_           | ┞-           | Ш            | Ы            |                 | -               | $\dashv$ |
| ZZZZZZ               | 1.00 | 0753 |     | L             |          | <u></u>  | 上        |          | L                  | <u> </u> | _        | Ļ        | <u> </u> |          | L        | ↓_           | ļ            | <del> </del> | ـــ          | <u> </u>     | <u> </u> | ┡        | ┞-           | <del> </del>   | ╄-           | L            | <u> </u>     | ┦            |              | $\vdash$        | $\dashv$        | $\dashv$ |
| CCV                  | 1.00 | 0755 |     |               |          | <u>L</u> |          | L        | L                  | 匚        | L        | L        | <u> </u> | L        | Ļ        | L            | ╄            | X            | _            | ↓_           | Ļ        | ┞        | ↓_           | ╄              | ↓_           |              | <b> </b> _   |              | Ш            |                 | -               | +        |
| CCB                  | 1.00 | 0756 |     | ${\mathbb L}$ |          | L        | <u>L</u> | L        | <u> </u>           | <u> </u> | <u> </u> | L        | <u></u>  | <u> </u> | <u> </u> | ╀            | ļ_           | X            | ↓_           | ╄            | <u> </u> | ┡        | ↓_           | ╄-             | ╀-           | ┞-           | ├-           | <b> </b>     | ⊢┤           | Н               | -               | +        |
| ZZZZZZ               | 1.00 | 0757 |     | L             |          |          | 丄        | L        | L                  | L        |          | L        | ـــ      | L        | <u> </u> | <u>Ļ</u>     | 1_           | ╀            | ╄            | ↓_           | <u> </u> | <u> </u> | ↓_           | ╄              | ╀            | ļ.,          | ┦            | H            | ⊢            | Н               |                 | +        |
| ZZZZZZ               | 1.00 | 0758 |     |               | L        | L        | <u></u>  | L        | _                  | 丄        | L        | <u>_</u> | _        | <u> </u> | 1_       | <u> </u>     | ↓_           | ╀            | Ļ            | 1_           | ╄-       | ↓_       | ↓_           | ╄              | ╀-           | -            | ┡            | ₩            | ┝            | Н               |                 | -        |
| ZZZZZZ               | 1.00 | 0800 |     |               | L        | L        | _        | L        | _                  | _        | _        | L        |          | _        | _        | 1            | ┺            | 4_           | 1_           | 丰            | ↓_       | ļ.,      | 1_           | ╄              | ╄            |              | ╄            | H            | $\vdash$     | -               | $\dashv$        | +        |
| ZZZZZZ               | 1.00 | 0801 |     |               |          | 1_       | 丄        | L        | 上                  | 丄        | 1_       | 丄        | _        | <u>_</u> | <u> </u> | ↓_           | ╄            | 1            | 1            | Ļ            | ↓_       | ļ        | ↓_           | ╄              | -            | +-           | ļ            | -            | Ш            | Н               | -               | $\dashv$ |
| Z2ZZZZ               | 1.00 | 0803 |     | $\perp$       |          |          | $\perp$  | L        | 丄                  | L        | _        | <u> </u> | <u> </u> | _        | L        | 上            | 1_           | 4            | <b>-</b>     | 1            | Ļ        | Ļ_       | <del> </del> | ╀              | ╀-           | ┞-           | ₩            | <del> </del> | <u></u>      | $\vdash$        |                 | +        |
| ZZZZZZ               | 1.00 | 0804 |     | L             |          | L        | L        | 1_       | 丄                  | 丄        | 1        | <u></u>  | <u> </u> | <u> </u> | ↓_       | ┸            | ╀            | 1            | ╀            | ╄-           | ļ.,      | ļ.,      | ╀-           | ╀              | ↓_           | ┞-           | ↓_           | ├            | <del> </del> |                 |                 | -        |
| Z2ZZZZ               | 1.00 | 0805 |     |               | 上        | L        | 丄        | L        | 上                  | L        | _        | 丄        | <u> </u> | <u> </u> | ↓_       | 1_           | ╄            | 1            | 4            | ↓_           | ↓_       | ↓.       | ╀-           | <del> </del> _ | ╄-           | ╄            | <del> </del> | —            | -            | -               | $\dashv$        | -        |
| 22222                | 1.00 | 0806 |     |               | L        | 丄        | 丄        | L        | L                  | L        | ╀_       | ┺        | ↓_       | ↓_       | ↓        | 1_           | 4            | ╄            | ╄            | <b> </b>     | ↓_       | ╄        | ╀-           | <del> </del>   | +            | ╀-           |              | ╀╌           | ┞            | Н               | $\vdash$        | -+       |
| ZZZZZZ               | 1.00 | 0808 |     | $\perp$       |          | 1_       | 丄        | 丄        | 丄                  | Ļ        | Ļ.,      | 丄        | ╄        | ↓_       | 1        | 1            | 1            | _            | ↓_           | ╄            | ╄        | ╄        | ╄            | 4-             | <del> </del> | ╀╌           | ┼            | ₩            | ⊢            | Н               |                 | +        |
| ZZZZZZ               | 1.00 | 0809 |     |               |          | 丄        | 1        | L        | 1_                 | L        | 1_       | 上        | ┞        | ┖        | 1        | 1            | 1            | 1            | 1            | ╄            | ╄-       | ╀        | 1            | ┼              | ╄            | <del> </del> | ╁—           | ┝            | ⊢            | $\vdash$        | $\vdash$        | -        |
| CCV                  | 1.00 | 0810 |     | $\perp$       | _        | 丄        | 上        | L        | $oldsymbol{\perp}$ | Ļ        | ↓_       | <b>_</b> | 1        | 1        | Ļ        | 1            | 4            | X            |              | ╄            | 4-       | ╀        | +            | 4              | ╂            | +-           | ╀            | ╀            |              | Н               |                 | +        |
| CCB                  | 1.00 | 0812 |     | I             |          |          | $\bot$   | Ļ        | Ļ                  | L        | 1_       | 1        | 1        | Ļ        | ╀        | 1            | 丰            | X            | 1_           | Ļ            | 1        | +        | 1            | 4-             | ╀            | +            | -            | ┼            | ⊬            | $\vdash$        | $\vdash$        | -+       |
| ZZZZZZ               | 1.00 | 0813 |     |               | 1        |          | ┸        | ↓        | 1                  | Ļ        | ↓_       | 1        | ╄        | ╄        | 1        | 4            | 1_           | 4            | <del> </del> | ╄-           | +-       | ╀        | +            | ╀              | ╁┈           | ┼            | ╁—           | ╁            | <b>├</b>     | ₩               | $\vdash \dashv$ | -+       |
| ZZZZZZ               | 1.00 | 0814 |     | L             | L        |          | $\perp$  | 1        | Ļ                  | Ļ        | 1        | ┺        | ┺        | Ļ        | 1        | 1            | ╀            | +            | 4            | +            | ╀-       | ╀        | +            | ╀              | ╀            | +-           | +-           | ╁            | ╀            | $\vdash$        | ┝╼┥             | -+       |
| ZZZZZZ               | 1.00 | 0816 | i   | Τ             |          | $\perp$  | 上        | 1        | 1                  | L        | 1_       | 1        | <u> </u> | 1        | $\perp$  | 1            | 4_           | 4            | 4            | 1            | 1        | ╀        | 4            | ╄-             | +            | ╄            | +            | ╄            | +            | ₩               | ┝┥              |          |
| 2222Z                | 1.00 | 0817 |     | I             | L        | L        | 丄        | 丄        | 丄                  | Ļ        | _        | 1        | 1        | 1        | 1        | 4            | 4_           | 4            | 4            | ╀-           | ╀        | ╀        | +-           | ╄              | ╀            | ╀            | ╀            | ╀            | ╀            | +-              | H               |          |
| ZZZZZZ               | 1.00 | 0815 |     | T             |          | $\perp$  | L        | 1        | L                  | L        | _        | L        |          | L        |          | 丄            | L            | 丄            | 1_           | ┸            | ┸        | 1_       |              | 1.             |              | 1_           | ⊥_           | ┸_           |              |                 | Ш               |          |

## ANALYSIS RUN LOG

Lab Name: LANCASTER\_LABORATORIES\_\_\_\_

SDG No.: PSB02\_\_\_

Instrument ID Number: 62347\_\_\_\_

Method: CV

Start Date: 05/11/04

End Date: 05/11/04

|                      |      |      |     | Τ        | - |   |   | • |          |    |        |   |           |          |          |         | An       | al | yt       | es       |        |          |          |     |                                        |              |   |              |                |          |          | -         |  |
|----------------------|------|------|-----|----------|---|---|---|---|----------|----|--------|---|-----------|----------|----------|---------|----------|----|----------|----------|--------|----------|----------|-----|----------------------------------------|--------------|---|--------------|----------------|----------|----------|-----------|--|
| EPA<br>Sample<br>No. | D/F  | Time | * R | A        | S | A | B | B | C        |    | C<br>R |   | C<br>T    | 1        |          |         | M        |    |          | K        | s<br>B | A<br>G   |          |     |                                        | Z            |   |              |                |          |          |           |  |
| ZZZZZZ               | 1.00 | 0820 |     |          |   |   |   |   |          |    |        |   |           |          |          |         |          |    |          |          |        |          |          |     |                                        |              |   |              |                |          |          | $\Box$    |  |
| 22222                | 1.00 | 0822 |     | L        |   |   |   |   |          |    |        |   |           |          |          |         |          | L  | L        | L        |        | L        | L        | L   |                                        |              | L | L            | 丄              |          |          | Ц         |  |
| 22222                | 1.00 | 0823 |     |          |   |   |   | Ĺ | L        |    |        |   |           |          |          |         |          | L  |          |          |        |          |          | L   | ↓_                                     | ┖            | L | <del> </del> | <u> </u>       | <u> </u> |          | $\Box$    |  |
| 22222                | 1.00 | 0825 |     |          |   |   |   |   |          |    |        |   | L         | L        |          |         | <u> </u> | L  | L        |          |        | L        | L        | L   | 丄                                      | Ļ            | L | 丄            | <u> </u>       | L        | _        | Щ         |  |
| PBW                  | 1.00 | 0826 |     |          |   |   |   | L | L        |    |        |   |           |          | <u> </u> | L       | <u> </u> | X  | 1_       |          |        | L        | L        | L   | _                                      | ┖            | L | ┺            | <u> </u>       | <u> </u> |          | $\sqcup$  |  |
| CCV                  | 1.00 | 0827 |     | $\Gamma$ | L | L | _ | L |          |    | Ш      | L | L         | L        | L        | <u></u> | <u> </u> | X  | L        |          |        | 乚        | L        | L   | $oldsymbol{\perp}$                     | <u> </u>     | L | _            | <u> </u>       | <u> </u> |          | $\sqcup$  |  |
| CCB                  | 1.00 | 0828 |     |          |   |   |   |   |          | L. |        | _ | L         | L        | L        | L_      | L        | X  | ┖        |          |        | L.       | <u> </u> |     | 上                                      | L            | L | L            | _              | _        |          | Ц         |  |
| LCSW                 | 1.00 | 0830 |     | L        |   | _ |   | L | <u> </u> | L  |        | L | L         | L        | L        | L       |          | X  |          |          |        | L        | <u>_</u> | ļ., | 丄                                      | L            | Ļ | Ļ            | L              | L        |          | Ш         |  |
| 554FB                | 1.00 | 0831 |     |          |   |   |   |   |          | L  |        | L |           | L        | L        | L       | L        | X  | _        |          |        | L        | L        | L   | ↓_                                     | <u> </u>     | L | _            | ↓_             | 匚        |          | Ш         |  |
| ZZZZZZ               | 1.00 | 0833 |     |          | L |   | L | L |          | L  | L      | L | <u> </u>  | <u> </u> | L        | L       | L        | L  | <u> </u> |          |        | _        | L        | L   | _                                      | <u> </u>     | 1 | 1_           | _              | L        |          | Ш         |  |
| ZZZZZZ               | 1.00 | 0834 |     |          |   | L |   |   |          | L  |        |   |           | L        |          | L       | <u> </u> |    | L        | L        |        | <u> </u> | _        | L   | _                                      | ↓            | L | 1_           | <u> </u>       | ┞        |          | Н         |  |
| ZZZZZZ               | 1.00 | 0836 |     |          |   |   |   |   |          |    |        | L | L         | L        | _        | L       | 1_       | L  | _        |          |        | L        | L        | L   | ↓_                                     | L            | L | 1_           | ↓_             | <u> </u> | <u> </u> | $\Box$    |  |
| 222222               | 1.00 | 0837 |     |          | L |   |   | L | _        | _  |        | _ | _         | _        | _        | L       | <u> </u> | L  | L        | L        | _      | L        | Ļ        | L   | <del> </del>                           | ↓            | L | <u> </u>     | <u>Ļ</u>       | 丄        | _        | Ш         |  |
| ZZZZZZ               | 1.00 | 0839 |     |          |   | L |   |   |          |    |        |   | _         | L        | L        | L       | L        | L  | L        | _        | L_     | L        | L        | L   | ــــــــــــــــــــــــــــــــــــــ | <u> </u>     | L | <u> </u>     | 1_             | <u> </u> | _        |           |  |
| ZZZZZZ               | 1.00 | 0840 |     |          |   |   | L | L | <u> </u> | L  |        | _ | L.        | Ļ        | _        | L       | <u> </u> | L  | L        | <u> </u> |        | L        | Ļ        | L   | <u> </u>                               | <u>Ļ</u>     | _ | 1_           | <del> </del> _ | <b> </b> | <u> </u> | <u> </u>  |  |
| CCV                  | 1.00 | 0842 |     |          |   | 1 |   |   |          |    |        |   | <u>L.</u> | L        |          | L       | <u> </u> | X  | L        |          |        |          | L        | L   | 1                                      | <del> </del> | L | Ļ.,          | ↓_             | ļ        |          | $\square$ |  |
| CCB                  | 1.00 | 0843 |     |          |   |   |   | 1 | L        |    |        |   |           |          |          |         |          | X  | Ĺ        | L        |        | <u> </u> | L        | L   | L                                      | L            | L | L            | <u> </u>       | L        | L        | Ш         |  |

IDL-MDL FORM

SDG Number: CLV93

Matrix: W

| Analyte | IDL  | MDL | TOÖ |
|---------|------|-----|-----|
| Lead    | 0.29 | 1.2 | 3   |
|         |      |     |     |

## **APPENDIX A**

# WET CHEMISTRY DATA DELIVERABLES FORMS

Quality Control Summary Method Blank Miscellaneous Wet Chemistry SDG: ICE01

|           |                                                                           | Method Blank Ar                                | nalvsis | · · · · · · · · · · · · · · · · · · · | •            | Matrix: SOIL  |       |      |      |
|-----------|---------------------------------------------------------------------------|------------------------------------------------|---------|---------------------------------------|--------------|---------------|-------|------|------|
| Parameter | Sample Number                                                             | Sample Code                                    |         | Analysis<br>Dale                      | Batch Number | Blank Results | Units | MDL  | LOQ. |
| Fluoride  | 4249580<br>4249681<br>4249682<br>P249217<br>P249218<br>P249219<br>P249220 | RXP5A<br>RXP5B<br>RXP9A<br>8<br>MS<br>MSD<br>D | M       | 4/13/04                               | 04099144801  | ND .          | mg/L  | 0.03 | 0.1  |
| ·.        |                                                                           |                                                |         |                                       | <b>-</b>     |               |       | •    |      |

Comments: The blank is acceptable when the result is less than the limit of quantitation.

| ABBREVIAT                       | TON KEY                                    |
|---------------------------------|--------------------------------------------|
| CO = Colorimetric               | MDL = Method Detection Limit               |
| DI = Distillation               | LOQ = Limit of Quantitation                |
| G = Gravimetric                 | NA = Not Applicable                        |
| IR = Infrared Spectropholometry | J = Estimated Value < LOQ                  |
| M = Meter                       | MSD = Matrix Spike Duplicate               |
| OD = Oven Dried                 | ND = Not Detected                          |
| TI = Titration                  | <ul> <li>= Out of Specification</li> </ul> |
| B = Background                  | D = Duplicate                              |
| MS = Matrix Spike               | LS = Low Spike 8857                        |
| HS = High Spike                 | PDS = Post Digestion Spike (P)             |

Quality Control Summary Duplicate Analysis Miscellaneous Wet Chemistry SDG: EWA79

|         |           |             |           |    |          |         |       | and: EA    |          |       |           |               |
|---------|-----------|-------------|-----------|----|----------|---------|-------|------------|----------|-------|-----------|---------------|
| Sample  |           |             |           |    |          |         |       | Matric SC  | ıL       | _     |           |               |
| tnfo.   | Dupticate | Analysis    |           | •  |          | BKG     | BKG   | DUP        | DUP      |       | RPD       | Control Limit |
| Sample  | Sample    |             |           |    | Analysis |         |       | Sample     | Results  | Units | (%)       | %4=           |
| Number  | Code      | Baich #     | Parameter | ME |          | Sample  |       | 4214401    | 19.55    | %     | 0         | 15            |
| 4214401 | GW773     | 04043820002 | Moisture  | OD | 2/12/04  | 4214401 | 19.61 | 4214401    |          | ٠."   |           | ł             |
| 4214402 | GW720     |             |           |    |          |         |       |            | •        |       |           |               |
| 4214403 | GW721     |             |           |    |          |         |       |            |          |       |           | 1             |
| 4214404 | GW720     |             |           |    | 1        |         |       | ł          |          |       |           |               |
| 4214405 | GP771     |             |           |    |          |         | ·     | ł          |          |       |           |               |
|         |           |             |           | l  |          |         |       | l .        |          |       |           | 1             |
|         |           |             |           | 1  |          |         |       |            |          |       |           |               |
|         |           |             |           | l  |          |         |       |            |          |       |           |               |
|         |           |             |           |    |          |         | l     | <u> </u>   |          |       | ŀ         |               |
|         | 1         |             |           | ı  | ]        |         | 1     |            |          | l     |           |               |
|         | Ì         |             |           | l  | 1        |         |       | Į.         |          |       |           |               |
|         |           |             |           |    |          |         |       |            |          |       |           |               |
|         |           |             |           |    |          | 1       |       | 1          |          |       |           |               |
|         |           |             |           |    | ]        |         | ·     |            |          |       |           | i             |
|         |           |             |           | 1  | 1        | ŀ       |       |            |          |       |           |               |
|         |           |             |           | 1  |          |         | 1     |            |          |       |           |               |
|         |           |             |           |    |          | İ.      | ŀ     |            |          |       |           |               |
| i       |           |             | ·         | 1  |          |         | ŀ     |            |          | 1     |           |               |
|         |           |             |           | Ì  | 1        |         | 1     |            | <b>!</b> |       |           |               |
|         |           |             |           | 1  | 1        | Ì       | •     | <b>l</b> . | ,        |       | l         |               |
|         |           |             |           | 1  | j        |         |       |            |          |       |           |               |
|         |           |             |           |    | 1        |         | }     |            |          |       | ł         | 1             |
|         |           |             |           |    | l        |         | •     |            |          | 1     |           | I             |
|         |           |             |           | 1  | l        | į       | 1     |            |          |       |           | j             |
|         |           |             |           |    | 1        | l       |       |            |          | ł     |           | 1             |
|         |           |             |           | 1  | 1        | 1       |       | 1          |          | 1     | <b>\$</b> | ļ             |
|         | 1         |             |           | 1  | ł        | 1       | ļ     |            | ļ '      | 1     |           | 1 .           |
|         | •         |             |           |    | l        |         | Į     |            |          | 1     | 1         |               |
| ;       |           |             | 1         |    | 1        |         |       |            | 1        |       | ł         | 1             |
| ,       |           |             | l         | 1  | }        |         |       | Į.         | 1        |       | l         | <u> </u>      |

Comments: If the background and/or the duplicate result was less than the limit of quantitation, the RPD is not required.

If the background and/or duplicate result is less than five times the limit of quantilation, the RPO is not considered applicable and is program deleted.

#### ABBREVIATION KEY MDL = Mathod Detection Limit CO = Colorimetric LOQ = Limit of Quantitation Dt = Distillation NA = Not Applicable G = Gravimetris IR = Infrared Spectrophotometry J = Estimated Value < LOQ ME = Method M = Meter ND = Not Detected OD = Oven Dried = Out of Specification

noitenin = IT

Quality Control Summary
Laboratory Control Standard
Laboratory Control Standard Duplicate
Miscellaneous Wet Chemistry
SDC: EWA79

|         |          |                   |           |     |         |          |            |          | SDG: E     | WA79             |         |            |
|---------|----------|-------------------|-----------|-----|---------|----------|------------|----------|------------|------------------|---------|------------|
|         |          |                   |           | _   |         |          |            |          |            |                  |         |            |
| Sample  |          | ory Control Stand | - mete    |     |         |          |            |          | Matric :   | SOIL             |         | 11111      |
| Info.   | Lanorali | by Collon Size    | 36 (44)   | 1   |         | TRUE     |            |          |            |                  |         | % RPD      |
|         |          |                   |           | i   | Pindena | LCSALCSD | LCS        | เธรอ     |            | ;                |         | Acceptance |
| Sample  | Sample   |                   |           | ME  |         | Value    | Results    | Results  | Units      | Acceptance Range | Results | =</th      |
| Number  | Code     | Batch #           | Parameter | ME  | 2/12/04 | 89.5     | 89.28      | NA       | %          | 88.6 - 90.4      | NA      | NA         |
| 4214401 | GW773    | 04043820002       | Moisture  | ľ   | 21200   | 03.0     |            |          |            |                  | 1       |            |
| 4214402 | GW720    |                   |           |     |         |          |            |          |            |                  |         |            |
| 4214403 | GW721    |                   |           | l   |         |          |            |          |            |                  |         |            |
| 4214404 | GW72D    |                   |           | !   |         | •        |            |          |            |                  |         |            |
| 4214405 | GP771    |                   |           | 1 : |         |          |            |          |            |                  | l       |            |
|         |          |                   | Į,        | Į į |         |          |            |          |            |                  | 1       |            |
|         | ,        |                   |           |     |         |          |            |          |            |                  | l       |            |
|         |          |                   |           | l   |         |          |            |          |            |                  | l       |            |
|         |          |                   |           | l   |         |          |            |          | !          |                  |         |            |
|         |          |                   |           | 1   | l       |          |            |          |            |                  | ŧ       |            |
|         |          |                   | •         | 1   | l       |          |            |          | l          |                  |         |            |
|         | 1        |                   |           | 1   | 1       |          | · '        |          | <b>!</b> . |                  | Į.      |            |
|         |          |                   |           | ł   | l       |          |            |          |            |                  | 1       |            |
|         |          |                   |           | 1   | l       |          |            |          |            |                  |         |            |
|         |          |                   |           | i   |         |          |            | · .      | 1          |                  |         | •          |
|         |          |                   |           | 1   | 1       |          |            |          | 1          |                  | Į       |            |
|         |          |                   |           | 1   |         |          |            |          | •          |                  | 1       | i          |
|         |          |                   |           | 1   | Ì       |          |            |          |            |                  | l       |            |
|         | 1        | ·                 | •         | 1   |         |          | ŀ          |          |            |                  | 1       |            |
|         |          |                   |           | l   |         |          | ļ          | Ì        |            |                  | 1       |            |
|         |          |                   |           | 1   | •       |          | l          | ŀ        | }          |                  | ł       | f          |
| •       |          |                   |           | 1   |         |          | ĺ          | 1        |            | }                |         |            |
|         |          |                   |           | l   | 1       |          | 1          | l        |            |                  |         |            |
|         |          |                   |           | l   |         |          | Ì          | ŀ        |            | ł                |         | ł          |
|         |          |                   |           | 1   | 1       |          | i          | ŀ        |            |                  |         | 1          |
|         |          |                   |           |     | [       |          |            | <u> </u> |            |                  | l       |            |
|         |          |                   |           | ı   | l       |          | 1          | 1        | 1          |                  | Į.      | 1          |
|         |          |                   |           | [   |         |          |            | [        | 1          | i                | l       | İ          |
|         |          |                   | i         | 1   | 1       | 1        | 1          | l        | i          | Ī                | I       | Į.         |
|         |          |                   |           | 1   | i       | 1        | l          | ł        | 1          | 1                | l       |            |
|         | [        |                   |           | 1   | l       | 1        | 1          | l        |            |                  | 1       |            |
|         |          |                   | l         |     | 1       | i        |            | Ī        | 1 .        |                  | 1       |            |
|         |          |                   | 1         | 1   | l       |          | Į.         | 1        | ł          |                  | l       |            |
|         |          | l                 | 1.        |     | ł       | 1        |            | 1        | 1          |                  | 1       | [          |
|         |          | Ī                 |           | •   |         |          | <u>  :</u> |          | <u> </u>   | <u> </u>         |         |            |

Quality Control Summary
Matrix Spike Analysis/ Matrix Spike Duplicate
Miscellaneous Wet Chemistry
SDG: ICE01

| Sample<br>Info. | Matrix   | Spike Analysis |           |    |          |         |        |         |             |      |         |              | Matrix: 5 | SOIL. |     |            |    |                |     |                 |
|-----------------|----------|----------------|-----------|----|----------|---------|--------|---------|-------------|------|---------|--------------|-----------|-------|-----|------------|----|----------------|-----|-----------------|
| Sample          |          |                |           |    | Analysis | BKG     | BKG    | MS      | MS<br>Spike | MS   | MSD     | MSD<br>Spike | MSD       |       | Rec | MSD<br>Rec | W  | plance<br>ndow | RPD | % RPD<br>Limits |
| Number          |          | Batch Number   | Parameter | ME |          | Sample  | Result |         | Added       |      | Sample  | Added        | Result    | Units | (%) | (%)        |    | %)             | (%) | <b>₹</b>        |
|                 | RXP5A    | 04099144801    | Fluoride  | M  | 4/13/04  | P249217 | 0.28   | P249218 | 1           | 1.26 | P249219 | 1            | 1.27      | mg/L  | 96  | 99         | 80 | - 112          | 1   | 5               |
| 4249681         |          |                |           |    | 1        |         |        |         |             |      |         |              |           |       |     | 1          |    |                | 1   |                 |
| 4249682         | RXP9A    |                |           |    |          |         |        |         |             |      |         | 1            |           |       |     | ]          |    |                | Į.  | 1               |
|                 |          |                |           | 1  |          |         | ł      |         | '           |      |         |              | i         | 1 1   |     | 1          |    |                | 1   | 1               |
| 1               | •        | •              |           | 1  |          |         | l      | 1       | 1           | l'   |         | <b>1</b>     |           |       |     | 1          |    |                | 1.  | 1               |
| l               | 1        | ;              |           | 1  |          |         | 1      |         | ] .         | · ·  |         |              | 1         | i     |     | 1          | 1  |                | 1   | 1               |
| l               | l        |                |           | Ì  | 1        |         | l      | 1       |             | ł    |         | l            | 1         |       |     | i          | Į. |                | -1  | 1               |
| l               | <b>!</b> | İ              |           | 1  |          |         | 1      |         |             | l    |         | 1            | 1         | 1     |     | 1          | 1  |                | 1   | 1               |
| }               | 1        | 1              | į         | 1  | 1        |         | Ì      | ł       | l           | ŀ    | 1       | 1            |           |       | ]   | li .       |    |                | - 1 | 1               |
| 1               | Ì        |                |           | 1  | 1        | l       | 1      | ļ       | ł           | ł    | ł       | Ì            | l         |       |     | 1          | İ  |                | ı   | 1               |
|                 |          |                |           |    | İ        |         | 1      | 1       | ١.          | 1    | 1       | 1            | i         |       |     | 1          |    |                | 1   | 1               |
| 1               |          |                |           |    | Į.       | 1       | 1      | 1       | 1           | 1    | 1       | ľ            | ł         | 1     | 1   | 1          | 1  |                |     | 1               |
| 1               | 1        |                | 1         | i  |          |         | 1      |         | ļ           |      | 1       | 1            | 1         |       |     | 1          |    |                |     | 1               |
| Ĭ               | 1        |                | 1         |    | 1        | 1       | l      | 1       | 1           | 1    | 1       | 1            | 1         | ľ     | ł   | 1          | Į. |                | - [ |                 |
| 1               | 1        | 1              | ł         | 1  | }        |         | 1      |         | ļ           |      | 1       | 1            | 1         |       | 1   | 1          | 1  |                | 1   | 1               |
| 1               | 1        | ļ              | i         | 1  | 1        |         | 1      |         | Į           | 1    | 1       | 1            | 1         | 1     | 1   |            |    |                | 1   | 1               |
|                 | 1        | 1              |           | 1  |          | 1       | ŀ      | 1       | 1           | 1    | İ .     |              | 1         | 1     | 1   |            | 1  |                | ď   | 1               |
| 1               | 1        |                |           |    | 1        |         |        | 1       | 1           | 1    | 1       | ļ            | 1         | l .   | 1   | 1          | 1  |                | 1   |                 |
| 1               | 1        | 1              | 1         |    | 1        |         | 1      | 1       | 1           | 1    |         | 1            | 1         | Į     | }   | 1          | 1  |                | 1   | 1               |
| 1               | 1        | 1              |           |    | 1        |         | 1      | 1       | [           | 1    | i       | 1            |           |       | 1   | 1          | 1  |                | 1   |                 |
| 1               | 1        |                | :1        | 1  | 1        | i       | 1      |         | 1           | ]    | 1       | 1            | ļ         | 1     |     |            | 1  |                | 1   | 1.              |
| -               | 1        |                |           | ı  | İ        |         | 1      |         | 1           |      | 1       | ].           | 1         |       |     | Į.         | 1  |                | 1   | 1               |
| l               | 1        | 1              |           | 1  | ì        | 1       | 1      | 1       |             | 1    |         | 1            | 1         | 1     | 1   | 1          | 1  |                | - 1 | 1               |

If the background and/or matrix spike/matrix spike duplicate result is less than five times the limit of quantilation, the RPD is not considered applicable and is program deleted.

If the background result was more than four times the spike added amount the percent recovery is program deleted.

(D)

#### ABBREVIATION KEY

CO = Colorimetric

ND = Not Detected

D1 = Distillaton

ME = Melhod

G = Gravimetric

MS = Matrix Spike

IR = Infrared Spectrophotometry

NA = Not Applicable

M = Meler

LOQ = Limit of Quantilation

OD = Oven Dried

• = Out of Specification

TI = Titration

J = Estimated Value < LOQ

MSO = Matrix Spike Duplicate

## **APPENDIX A**

# INSTRUMENTAL WATER QUALITY DATA DELIVERABLES FORMS

Quality Control Summary Method Blank

Instrumental Water Quality

Matrix: SOIL DPA03 SDG:

| Analysis<br>Date | Method                                   | Batch Number                                    | Blank<br>Results                                                                                                                                                                               | Units                                                                                                                                                                                                                                           | MDL                                                                                                                                                                                                                                                                                                     | LOQ                                                                                                                                                                                                                                                                                                                                                    |
|------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04/14/04         | . IC                                     | 04105105201                                     | ND                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                           | 0.8                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                    |
| 04/14/04         | īC                                       | 04105105201                                     | ND                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                           | 0.8                                                                                                                                                                                                                                                                                                     | . 1                                                                                                                                                                                                                                                                                                                                                    |
| 04/07/04         | AK                                       | 04096110201                                     | ND                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                     |
| 04/05/04         | TOC                                      | 04096011131                                     | ND                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                      | 170                                                                                                                                                                                                                                                                                                                                                    |
|                  | Date<br>04/14/04<br>04/14/04<br>04/07/04 | Date Method 04/14/04 IC 04/14/04 IC 04/07/04 AK | Date         Method         Batch Number           04/14/04         IC         04105105201           04/14/04         IC         04105105201           04/07/04         AK         04096110201 | Date         Method         Batch Number         Results           04/14/04         IC         04105105201         ND           04/14/04         IC         04105105201         ND           04/07/04         AK         04096110201         ND | Date         Method         Batch Number         Results         Units           04/14/04         IC         04105105201         ND         mg/kg           04/14/04         IC         04105105201         ND         mg/kg           04/07/04         AK         04096110201         ND         mg/kg | Date         Method         Batch Number         Results         Units         MDL           04/14/04         IC         04105105201         ND         mg/kg         0.8           04/14/04         IC         04105105201         ND         mg/kg         0.8           04/07/04         AK         04096110201         ND         mg/kg         10 |

Comments: The blank is acceptable when the result is less than the limit of quantitation.

## ABBREVIATION KEY

AR = Alpkem

DOC = Dissolved Organic Carbon

IC = Ion Chromatography
TEN = Total Kjeldahl Nitrogen
TOC = Total Organic Carbon
TOX = Total Organic Halogen

J = Estimated Value
LOQ = Limit of Quantitation
HDL = Method Detection Limit
NA = Not Applicable
ND = Not Detected

Quality Control Summary Duplicate Sample Analysis Instrumental Water Quality Matrix: SOIL DPA03 SDG:

| Sample            | Sample<br>Code | Analyte                       | Analysis<br>Date | Method | Batch #      | Sample<br>Result |       | Units |    | Control<br>Limits % |
|-------------------|----------------|-------------------------------|------------------|--------|--------------|------------------|-------|-------|----|---------------------|
| Number<br>4247255 |                | Nitrate                       | 04/14/04         | IC     | 04105105201A | ND               | ND    | mg/kg | HA | 197                 |
|                   | [              | Nitrite                       | 04/14/04         | ıc     | 04105105201A | ND               | йр    | mg/kg | NA | N)                  |
| 4247255           | E5-12          | Total<br>Phosphorus as<br>PO4 | 04/07/04         | AK     | 04096110201A | 377.8            | 341.5 | mg/kg | 10 | 13                  |
| 4246405           | פתופים         | TOC<br>Combustion             | 04/05/04         | TOC    | 04096011131A | 1048             | 972   | mg/kg | AN | H                   |
| 4247255           | E5-12          | TOC<br>Combustion             | 04/06/04         | TOC    | 04096011131B | 1552             | 1501  | mg/kg | 3  | 1.                  |

Comments: If the background and/or the duplicate result was less than the limit of quantitation, the RPD is not required.

If the background and/or duplicate result is less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

## ABBREVIATION KEY

AK = Alpkem

DOC = Dissolved Organic Carbon

IC = Ion Chromatography

RA = Rapid Analyzer

TKN - Total Kjeldahl Nitrogen TOC = Total Organic Carbon

TOX = Total Organic Halogen

D = Duplicate

ME = Method

NA = Not Applicable

ND = Non Detected

\* = Out of Specification

J = Estimated Value <

LOQ

Quality Control Summary

Laboratory Control Standard (LCS)
Laboratory Control Standard Duplicate (LCSD)

Instrumental Water Quality

Matrix: SOIL SDG: DPA03

| Barch Numbers | Analyte                       | Analysis<br>Date | ME  | True<br>LCS/LCSD<br>Value | LCS<br>Results | LC5D<br>Results | Units | Acceptance<br>Range | % RPD<br>Results | E RPD<br>Acceptance<br>=</th |
|---------------|-------------------------------|------------------|-----|---------------------------|----------------|-----------------|-------|---------------------|------------------|------------------------------|
| 04105105201   | Nitrate                       | 04/14/04         | IC  | 100                       | 100.6054       | ŃА              | mg/kg | 89.5 - 110.4        | на               | АН                           |
| 04105105201   | Nitrite                       | 04/14/04         | IC  | 190                       | 99.6400        | NA              | mg/kg | 89.5 - 110.4        | NA               | AÜ                           |
| 04096110201   | Total<br>Phosphorus as<br>PO4 | 04/07/04         | AK  | 1535                      | 1535           | NA              | mg/kg | 1373.8 - 1694.6     | на               | HA                           |
| 04096011131   | TOC<br>Combustion             | 04/05/04         | TOC | 7480                      | 7669           | AH              | mg/kg | 4877 - 9522         | NA               | АК                           |

#### ABBREVIATION KEY

AK = Alpkem ME = Method
DOC = Dissolved Organic Carbon NA = Not Applicable

IC = Ion Chromatography

TKN = Total Kjeldahl Nitrogen TOC = Total Organic Carbon

TOX = Total Organic Halogen

ME = Method

ND = Not Detected

\* = Out of Specification

RA = Rapid Analyzer

Quality Control Summary
Matrix Spike (MS)
Matrix Spike Duplicate (MSD)
Instrumental Water Quality
Matrix: SOIL
SDG: DPA03

| Sam<br>Num |      | Sample<br>Code | Analyte                      | Spike<br>Analysis<br>Date | ME  | Batch (      | Sample<br>Result | MS<br>Spike<br>Added | MSD<br>Spike<br>Added | MS<br>Result | MSD<br>Result | Units |      | Rec<br>(%) | Wi | ptance<br>ndow<br>(%) | RPD<br>(%) | &RPD<br>Limits |
|------------|------|----------------|------------------------------|---------------------------|-----|--------------|------------------|----------------------|-----------------------|--------------|---------------|-------|------|------------|----|-----------------------|------------|----------------|
| 4247       | 255  | E5-12          | Nitrate                      | 04/14/04                  | IC  | 04105105201A | ND               | 99                   | AM                    | 87.8130      | NA            | mg/kg | 89 1 | NA         | 90 | - 110                 | NA         | NA             |
| 1247       | 255  | E5-12          | Nitrite                      | 04/14/04                  | IC  | 04105105201A | ND               | 99                   | NA                    | 86.9431      | AN            | mg/kg | 88   | AN         | 90 | - 110                 | NA         | АИ             |
| 4247       | 255  |                | Total<br>Phosphorus a<br>PO4 | o4/07/04                  | AK  | 04096110201A | 377.8            | 2853                 | AN                    | 3143.2       | AN            | mg/kg | 97   | NA         | 88 | - 133                 | NA         | NA             |
| 124        | 5405 |                | roc<br>Combustion            | 04/05/04                  | roc | 04096011131A | 1048             | 300000               | МА                    | 310700       | АИ            | mg/kg | 103  | NA         | 71 | - 136                 | NA         | NA             |
| 124        | 7255 | E5-12          | TOC<br>Combustion            | 04/05/04                  | roc | 04096011131B | 1552             | 277776               | NA                    | 288519       | NA            | mg/kg | 103  | NA         | 71 | - 136                 | NA         | NA             |

#### Comments:

If the matrix spike/matrix spike duplicate results are less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

If the background result was more than four times the spike added amount the percent recovery is program deleted.

#### ABBREVIATION KEY

AK = Alpkem

DOC = Dissolved Organic Carbon

IC = Ion Chromatography

RA = Rapid Analyzer

TKN = Total Kjeldahl Nitrogen

TOC = Total Organic Carbon

TOX = Total Organic Halogen

J = Estimated Value < LOQ

LOO = Limit of Quantitation

ME = Method

MA = Not Applicable

ND = Non Detected

= Spike

и = Spike Duplicate

= Out of Specification

|     | alibration<br>ion/Blank | Result<br>(mg/L) | %<br>Recovery |
|-----|-------------------------|------------------|---------------|
| ICV | True Value              | 2.42356          | 97            |
| ICB | ō                       | ND               | NA            |

|   | Continuing (<br>Verificat | Calibration<br>ion/Blank<br>True Value           | Result<br>(mg/L) | Recovery |
|---|---------------------------|--------------------------------------------------|------------------|----------|
| 1 | CCV1                      | 1                                                | 0.93371          | 93       |
| 1 | CCB 1                     | 0                                                | ND.              | NA       |
|   | CCV2                      | 2.5                                              | 2.42808          | 97       |
| - | CCB 2                     | 0                                                | ND               | NA       |
|   | ccv3                      | 3.5                                              | 3.40747          | 97       |
|   | CCB 3                     | 0                                                | ND               | NA       |
|   | CCV2                      | 2.5                                              | 2.43314          | 97       |
|   | CCB 4                     | 0                                                | ND .             | NA       |
|   | CCV1                      | <del>                                     </del> | 0.93850          | 94       |
|   | CCB 5                     | <del>                                     </del> | ND               | NA       |
|   | CCV2                      | 2.5                                              | 2.44059          | 98       |
|   | CCB 6                     | 0                                                | ND               | NA       |
|   | 1 ((()))                  |                                                  |                  |          |

Quality Control Summary Initial And Continuing Calibration Instrumental Analysis Total Phosphorus as PO4 SDG: DPA03 Instrument Identification: 4758

\*=Out of Specifications

Initial Calibration Date: 04/07/04 Continuing Calibration Dates: D4/07/04

|         | True Value            | Acceptance Range |
|---------|-----------------------|------------------|
| ICA/CCA | (mg/L)<br>Varies<br>O | +/- 10%<br>< LOQ |

Quality Control Summary Initial and Continuing Calibration Instrumental Analysis/Anion Scan

Instrument Identification: 08022 Calibration Date: 04/13/04 Calibration Date:

SDG:

DPA03

| Batch Number | Analysis/<br>Parameter                                               | AUTO<br>CAL1   | AUTO<br>CAL2     | AUTO<br>CAL3     | AUTO<br>CAL4     | AUTO<br>CAL5       | R <sup>2</sup>       | CC                   |
|--------------|----------------------------------------------------------------------|----------------|------------------|------------------|------------------|--------------------|----------------------|----------------------|
| 04105105201A | Fluoride Chloride Nitrite-N Bromide Nitrate-N Orthophosphate Sulfate | 37778<br>43168 | 156841<br>172340 | 399491<br>435184 | 829125<br>911660 | 1280536<br>1415962 | 0.999474<br>0.999167 | 0.999737<br>0.999583 |

ICV/CCV Control Limits: 90% - 110% ICB/CCB < LOQ of the Analyte

Concentration units: mg/L

|                       |      | 104/13/04, 04<br>Initial C | alibration        |        | Continuing Calibration Verification/Blank |        |          |        |  |  |  |
|-----------------------|------|----------------------------|-------------------|--------|-------------------------------------------|--------|----------|--------|--|--|--|
| Analyte               | True | ICV                        | ion/Blank<br>%Rec | ICB    | True                                      | CCV1   | %Rec     | CCB1   |  |  |  |
| F1<br>C1<br>NO2<br>Br | 1.5  | 1.4776                     | 99                | 0.0000 | 1.5                                       | 1.4715 | 98<br>98 | 0.0000 |  |  |  |
| 103<br>0-P04<br>504   | 1.5  | 1.4903                     | 99                | 0.0000 | 1.5                                       | 1.4771 | 30       | 0.0303 |  |  |  |

| Analyte                                      | Continuir<br>True | g Calibrat:<br>CCV2 | on Verificat<br>%Rec | ion/Blank<br>CCB2 | Continui<br>True | ing Calibrati<br>CCV3 | on Verificat | cce3 |
|----------------------------------------------|-------------------|---------------------|----------------------|-------------------|------------------|-----------------------|--------------|------|
| F1<br>C1<br>NO2<br>Br<br>NO3<br>O-PO4<br>SO4 | 2.5<br>2.5        | 2.5179<br>2.5168    | 101<br>101           | 0.0447<br>0.0452  |                  |                       |              |      |

Correlation Coefficient 0.9991

Blank: 0 cts
Blank: 0 cts
Blank: 0 cts
Average: 0 cts

Quality Control Summary
Initial Calibration & Linearity Check
Instrumental Analysis
Total Organic Carbon Combustion
Instrument Identification: 8610
Calibration Date: 04/02/04
MATRIX: SOIL
SDG: DPA03

| Batch Number                 | STD. | STD.<br>0.45 mg C | STD.<br>1.80 mg C | STD.<br>6.00 mg C |               |
|------------------------------|------|-------------------|-------------------|-------------------|---------------|
| 04096011131A<br>04096011131B | 240  | 1214              | 4400              | 14353             | UNITS=<br>CTS |
|                              |      |                   | ·                 |                   |               |
|                              |      |                   |                   |                   |               |

| Jonunuing Gallorallon | IRUE  | Keznit | 70       | Continuing Calibration Dates: 4/05/04, 4/05/04          |
|-----------------------|-------|--------|----------|---------------------------------------------------------|
| Verification          | Value | (mg/L) | Recovery |                                                         |
| CCV                   | 1,5   | 1.543  | 103      |                                                         |
| CCV                   | 3     | 3.046  | 102      |                                                         |
| CCV                   | 4.5   | 4.605  | 102      | True Value (mg/L) Acceptance Range                      |
| CCV                   | 1.5   | 1.560  | 104      | ICV/CCV Varies +/- 10%                                  |
| CCV                   | 3     | 3,109  | 104      |                                                         |
| CCV                   | 4.5   | 4.387  | 97       |                                                         |
|                       |       |        | ı        |                                                         |
|                       |       |        |          |                                                         |
|                       |       |        |          |                                                         |
|                       |       | ·      |          |                                                         |
|                       |       |        |          | Out of Specification CCVs/CCBs are immediately followed |
|                       |       |        |          | by two acceptable CCVs/CCBs.                            |
|                       |       |        | ,        |                                                         |
|                       |       |        |          |                                                         |
|                       |       |        |          |                                                         |